MHB Find the perimeter of the triangle

Click For Summary
To find the perimeter of the right-angled triangle with sides \(a\) and \(b\), the inequality \(\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3\) must hold true. The values \(a = 3\sqrt{2}\) and \(b = 2\sqrt{3}\) satisfy this inequality. The perimeter is calculated as \(P = a + b + c\), where \(c\) is the hypotenuse determined by the Pythagorean theorem. Substituting the values gives a perimeter of \(P = 3\sqrt{2} + 2\sqrt{3} + \sqrt{(3\sqrt{2})^2 + (2\sqrt{3})^2}\). Thus, the perimeter of the triangle can be accurately determined using these dimensions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.
 
Mathematics news on Phys.org
anemone said:
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.

=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

so c(diagonal) = sqrt(30)

so perimeter = 3 sqrt(2) + 2 sqrt(3) + sqrt(30)

- - - Updated - - -
 
kaliprasad said:
=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)
 
anemone said:
Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)

I think I owe an explanation
sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

now we are having

sqrt(1 + x) + sqrt(4 + y) <= 3 with x,y > 0

if x = 0 and y =0 then LHS = 3
if x > 0 then y = 0 then LHS = 2 + sqrt(1+x) > 2 + 1 > 3
similarly for y > 0 and for x and y > 0 LHS > 3

x = (a - 3 sqrt(2))^2
y = (b - 2 sqrt(3))^2

or

lowest value of LHS = 3 when - (a - 3 sqrt(2))= 0 and (b - 2 sqrt(3)) = 0 then only condition is satisfied
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K