MHB Find the perimeter of the triangle

AI Thread Summary
To find the perimeter of the right-angled triangle with sides \(a\) and \(b\), the inequality \(\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3\) must hold true. The values \(a = 3\sqrt{2}\) and \(b = 2\sqrt{3}\) satisfy this inequality. The perimeter is calculated as \(P = a + b + c\), where \(c\) is the hypotenuse determined by the Pythagorean theorem. Substituting the values gives a perimeter of \(P = 3\sqrt{2} + 2\sqrt{3} + \sqrt{(3\sqrt{2})^2 + (2\sqrt{3})^2}\). Thus, the perimeter of the triangle can be accurately determined using these dimensions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.
 
Mathematics news on Phys.org
anemone said:
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.

=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

so c(diagonal) = sqrt(30)

so perimeter = 3 sqrt(2) + 2 sqrt(3) + sqrt(30)

- - - Updated - - -
 
kaliprasad said:
=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)
 
anemone said:
Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)

I think I owe an explanation
sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

now we are having

sqrt(1 + x) + sqrt(4 + y) <= 3 with x,y > 0

if x = 0 and y =0 then LHS = 3
if x > 0 then y = 0 then LHS = 2 + sqrt(1+x) > 2 + 1 > 3
similarly for y > 0 and for x and y > 0 LHS > 3

x = (a - 3 sqrt(2))^2
y = (b - 2 sqrt(3))^2

or

lowest value of LHS = 3 when - (a - 3 sqrt(2))= 0 and (b - 2 sqrt(3)) = 0 then only condition is satisfied
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
943
Replies
2
Views
1K
Replies
2
Views
5K
Replies
13
Views
4K
Replies
2
Views
2K
Replies
11
Views
2K
Back
Top