MHB Find the perimeter of the triangle

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.
 
Mathematics news on Phys.org
anemone said:
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.

=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

so c(diagonal) = sqrt(30)

so perimeter = 3 sqrt(2) + 2 sqrt(3) + sqrt(30)

- - - Updated - - -
 
kaliprasad said:
=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)
 
anemone said:
Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)

I think I owe an explanation
sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

now we are having

sqrt(1 + x) + sqrt(4 + y) <= 3 with x,y > 0

if x = 0 and y =0 then LHS = 3
if x > 0 then y = 0 then LHS = 2 + sqrt(1+x) > 2 + 1 > 3
similarly for y > 0 and for x and y > 0 LHS > 3

x = (a - 3 sqrt(2))^2
y = (b - 2 sqrt(3))^2

or

lowest value of LHS = 3 when - (a - 3 sqrt(2))= 0 and (b - 2 sqrt(3)) = 0 then only condition is satisfied
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
933
Replies
2
Views
1K
Replies
2
Views
5K
Replies
13
Views
4K
Replies
2
Views
2K
Replies
11
Views
2K
Back
Top