Find the perimeter of the triangle

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Perimeter Triangle
Click For Summary

Discussion Overview

The discussion revolves around finding the perimeter of a right-angled triangle given an inequality involving its two shortest sides, $a$ and $b$. The focus is on understanding the conditions under which the inequality holds true.

Discussion Character

  • Mathematical reasoning, Conceptual clarification

Main Points Raised

  • Post 1 and Post 2 present the same inequality that the sides $a$ and $b$ must satisfy.
  • Post 3 questions the necessity of explaining why the inequality is true if and only if $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, indicating a potential need for clarification on this point.
  • Post 4 reiterates the previous point and expresses uncertainty about the obviousness of the condition, suggesting a desire for further explanation.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the necessity of explaining the conditions of the inequality, and there is uncertainty regarding the clarity of the relationship between the inequality and the values of $a$ and $b$.

Contextual Notes

The discussion does not resolve the mathematical steps needed to establish the truth of the inequality or the implications for the perimeter calculation.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.
 
Mathematics news on Phys.org
anemone said:
The two shortest sides of a right-angled triangle, $a$ and $b$ satisfy the inequality $$\sqrt{a^2-6a\sqrt{2}+19}+\sqrt{b^2-4b\sqrt{3}+16}\le3$$.

Find the perimeter of this triangle.

=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

so c(diagonal) = sqrt(30)

so perimeter = 3 sqrt(2) + 2 sqrt(3) + sqrt(30)

- - - Updated - - -
 
kaliprasad said:
=> sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

possible onlly if a = 3 sqrt(2) and b = 2 sqrt(3)

Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)
 
anemone said:
Hi kaliprasad,

Thanks for participating and I think it's necessary to state why the given inequality is true iff $a = 3 \sqrt{2}$ and $b = 2 \sqrt{3}$, what do you think?

Or perhaps it's very obvious and it's just me don't see how it is so?(Tongueout)

I think I owe an explanation
sqrt((a - 3 sqrt(2))^2 + 1) + sqrt((b - 2 sqrt(3))^2 + 4) < = 3

now we are having

sqrt(1 + x) + sqrt(4 + y) <= 3 with x,y > 0

if x = 0 and y =0 then LHS = 3
if x > 0 then y = 0 then LHS = 2 + sqrt(1+x) > 2 + 1 > 3
similarly for y > 0 and for x and y > 0 LHS > 3

x = (a - 3 sqrt(2))^2
y = (b - 2 sqrt(3))^2

or

lowest value of LHS = 3 when - (a - 3 sqrt(2))= 0 and (b - 2 sqrt(3)) = 0 then only condition is satisfied
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
7
Views
3K