SqueeSpleen
- 138
- 5
I know (from a previous exercise) that:
\lim_{z \to 0} \frac{\sin z - z}{z \sin z} = 0
I had to prove that:
<br /> f(z) = \left\{\begin{matrix}<br /> \frac{1}{\sin z} + \frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z} \text{ if } z \neq 0\\ <br /> 0 \text{ if } z = 0<br /> \end{matrix}\right.<br />
Is analytic in \{ z \in \mathbb{C} / | z | < 2 \}
From this result I have to deduce that the principal part of Laurent's expansion of \frac{1}{\sin z} is like
-\frac{1}{z}-2 \displaystyle \sum_{n=1}^{\infty} \frac{\pi^{2n}}{z^{2n+1}}
I suppose they meant at z_{0} = 0, but they didn't state it anywhere (I suspect something in the exercise isn't correct).
What I did was:
\frac{1}{\sin z} + \frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z} = \underbrace{(-\frac{1}{\sin z} + \frac{1}{z})}_{= 0 \text{ when } z \to 0} + \displaystyle \sum_{n=1}^{\infty} \frac{z^{2n-1}}{\pi^{2n}}
And both parts are analytics.
Then I tried to use that:
\frac{1}{\sin z} = f(z)
\frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z} = g(z)
Then
\displaystyle \int_{C} (f(z)+g(z))z^{n} dz = 0 \forall n \in \mathbb{N} (Because it's analytic).
Then we have
\displaystyle \int_{C} f(z)z^{n} dz = - \displaystyle \int_{C} g(z)z^{n} dz
I did the something with negative powers (Now I think I made my mistake here, I'll think it later).
Anyway, not even wolframalpha gives me the expansion I'm supposed to find.
All I can guess but I'm not sure how to justify it, is that the principal part of [/itex]\frac{1}{\sin z}to (-1) \cdot the princial part of \frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z, otherwise the limit when z \ to 0 wouldn't be zero, even more, I think it would diverge (It could be \neq 0 if the principal part coincides but the constant isn't the same).<br /> <br /> I think the person who made the exercise did a mistake -\frac{1}{z}-2 \frac{1}{z} \displaystyle \sum_{n=1}^{\infty} \underbrace{\frac{\pi^{2n}}{z^{2n}}}_{\text{here}} inverting the fraction, but I may be wrong and I don't want to ask him without being sure.
\lim_{z \to 0} \frac{\sin z - z}{z \sin z} = 0
I had to prove that:
<br /> f(z) = \left\{\begin{matrix}<br /> \frac{1}{\sin z} + \frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z} \text{ if } z \neq 0\\ <br /> 0 \text{ if } z = 0<br /> \end{matrix}\right.<br />
Is analytic in \{ z \in \mathbb{C} / | z | < 2 \}
From this result I have to deduce that the principal part of Laurent's expansion of \frac{1}{\sin z} is like
-\frac{1}{z}-2 \displaystyle \sum_{n=1}^{\infty} \frac{\pi^{2n}}{z^{2n+1}}
I suppose they meant at z_{0} = 0, but they didn't state it anywhere (I suspect something in the exercise isn't correct).
What I did was:
\frac{1}{\sin z} + \frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z} = \underbrace{(-\frac{1}{\sin z} + \frac{1}{z})}_{= 0 \text{ when } z \to 0} + \displaystyle \sum_{n=1}^{\infty} \frac{z^{2n-1}}{\pi^{2n}}
And both parts are analytics.
Then I tried to use that:
\frac{1}{\sin z} = f(z)
\frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z} = g(z)
Then
\displaystyle \int_{C} (f(z)+g(z))z^{n} dz = 0 \forall n \in \mathbb{N} (Because it's analytic).
Then we have
\displaystyle \int_{C} f(z)z^{n} dz = - \displaystyle \int_{C} g(z)z^{n} dz
I did the something with negative powers (Now I think I made my mistake here, I'll think it later).
Anyway, not even wolframalpha gives me the expansion I'm supposed to find.
All I can guess but I'm not sure how to justify it, is that the principal part of [/itex]\frac{1}{\sin z}to (-1) \cdot the princial part of \frac{z^{2}+\pi^{2}}{z^{3}-\pi^{2}z, otherwise the limit when z \ to 0 wouldn't be zero, even more, I think it would diverge (It could be \neq 0 if the principal part coincides but the constant isn't the same).<br /> <br /> I think the person who made the exercise did a mistake -\frac{1}{z}-2 \frac{1}{z} \displaystyle \sum_{n=1}^{\infty} \underbrace{\frac{\pi^{2n}}{z^{2n}}}_{\text{here}} inverting the fraction, but I may be wrong and I don't want to ask him without being sure.
Last edited: