Find the probability of being same

  • Context: MHB 
  • Thread starter Thread starter Diganta281
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The probability of file B being identical to file A, both of size 8192 bytes (65536 bits), is calculated as 1/2^65536, or 2^-65536, assuming all bit sequences are equally likely. When considering that both files contain 16384 bits filled with 1s and the remainder with 0s, the probability increases, but the exact calculation requires a more complex combinatorial approach. The initial assumption of uniform distribution across all bit sequences does not hold true in this scenario, necessitating a reevaluation of the probability based on the specific distribution of bits.

PREREQUISITES
  • Understanding of basic probability theory
  • Familiarity with binary representation and bit sequences
  • Knowledge of combinatorial mathematics
  • Ability to apply probability formulas in practical scenarios
NEXT STEPS
  • Explore combinatorial probability calculations for specific bit distributions
  • Learn about the implications of fixed bit sequences on probability
  • Study advanced topics in probability theory, such as conditional probability
  • Investigate applications of probability in computer science, particularly in data integrity
USEFUL FOR

Mathematicians, computer scientists, data analysts, and anyone interested in the intersection of probability theory and data verification.

Diganta281
Messages
3
Reaction score
0
This question is somewhat related to computer but deals with a big lot of probability.I have been given two files (A and B) of size 8192 bytes and is asked to find the probability of that file B is same as file A.I know that for two files to be same, they should have same bit sequence i.e same sequence of 1s and 0s.
As the files are of 8192 bytes so they have (8192*8) i.e 65536 bits.
Now our sample space (S) includes all the probable bit sequences of file A.
Using the formulae variation^length, I got that n(S)=2 ^65536
[Since , variations are 1 and 0 i.e 2 variations and length =65536 bits]
Now , Since file B can have only one sequence of bits
\therefore n(E)=1 [let E denote the set of favourable outcomes to the event that file B is same as file A]
\therefore probability of the matching of the two files = n(E)/ n(S) =1/2^65536 = 2^-65536

Upto this it is clear to me but the real problem starts in the next part :
In the next part of problem it is given that file A as well as file B have 16384 bits filled with 1s and the rest bits filled with 0s.
Now certainly the above found probability would increase as in the above part we have considered that both file A and B can have as many 1s and 0s required to fill the complete sequence of bits.
Now I am not able to figure out what the probability of both the files being same would be!
Plz help me soon...
 
Physics news on Phys.org
Diganta28 said:
This question is somewhat related to computer but deals with a big lot of probability.I have been given two files (A and B) of size 8192 bytes and is asked to find the probability of that file B is same as file A.I know that for two files to be same, they should have same bit sequence i.e same sequence of 1s and 0s.
As the files are of 8192 bytes so they have (8192*8) i.e 65536 bits.
Now our sample space (S) includes all the probable bit sequences of file A.
Using the formulae variation^length, I got that n(S)=2 ^65536
[Since , variations are 1 and 0 i.e 2 variations and length =65536 bits]
Now , Since file B can have only one sequence of bits
\therefore n(E)=1 [let E denote the set of favourable outcomes to the event that file B is same as file A]
\therefore probability of the matching of the two files = n(E)/ n(S) =1/2^65536 = 2^-65536

Upto this it is clear to me but the real problem starts in the next part :
In the next part of problem it is given that file A as well as file B have 16384 bits filled with 1s and the rest bits filled with 0s.
Now certainly the above found probability would increase as in the above part we have considered that both file A and B can have as many 1s and 0s required to fill the complete sequence of bits.
Now I am not able to figure out what the probability of both the files being same would be!
Plz help me soon...

Your approach to the problem would be fair if any combination of 8192 bytes had the same probability, and this clearly is not true ... I think your question isn't easy to answer ...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 56 ·
2
Replies
56
Views
11K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 57 ·
2
Replies
57
Views
6K