MHB Find the Ratio of $\overline{BD}: \overline{CD}$ in $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Ratio
Click For Summary
In triangle ABC with sides AB=5, AC=6, and BC=7, point M is the midpoint of AC. Point D lies on BC such that line AD is perpendicular to line BM. The discussion focuses on finding the ratio of segments BD to CD. The correct ratio is confirmed as accurate by participants. The geometric relationships and properties of the triangle are crucial to solving the problem.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC, \overline{AB}=5,\overline{AC}=6,\overline{BC}=7,$$M$ is the midpoint of $\overline{AC}$
$D$ is one point on $\overline{BC}$,if $\overline{AD}\perp \overline{BM}$,
please find the ratio of $\overline{BD}: \overline{CD}$
 

Attachments

  • the ratio of segments BD and CD.jpg
    the ratio of segments BD and CD.jpg
    8 KB · Views: 116
Last edited:
Mathematics news on Phys.org
$$5^2=7^2+6^2-2(7)(6)\cos C\Rightarrow\cos C=\frac57$$

In an orthodiagonal quadrilateral, the sum of the squares of opposite sides are equal, hence

$$x^2+3^2=\overline{MD}^2+5^2\Rightarrow x^2-\overline{MD}^2-16=0\quad[1]$$

$$\overline{MD}^2=9+y^2-2(3)(y)\cos C\Rightarrow\overline{MD}^2=9+y^2-\frac{30}{7}y\quad[2]$$

Substituting $$[2]$$ into $$[1]$$ gives $$x^2- y^2+\frac{30}{7}y-25=0$$

$$7x^2-7y^2+30y-175=0$$

$$7(7-y)^2-7y^2+30y-175=0\Rightarrow y=\frac{42}{17},x=7-y=\frac{77}{17},\frac xy=\frac{11}{6},\overline{BD}:\overline{CD}=11:6$$
 
greg1313 said:
$$5^2=7^2+6^2-2(7)(6)\cos C\Rightarrow\cos C=\frac57$$

In an orthodiagonal quadrilateral, the sum of the squares of opposite sides are equal, hence

$$x^2+3^2=\overline{MD}^2+5^2\Rightarrow x^2-\overline{MD}^2-16=0\quad[1]$$

$$\overline{MD}^2=9+y^2-2(3)(y)\cos C\Rightarrow\overline{MD}^2=9+y^2-\frac{30}{7}y\quad[2]$$

Substituting $$[2]$$ into $$[1]$$ gives $$x^2- y^2+\frac{30}{7}y-25=0$$

$$7x^2-7y^2+30y-175=0$$

$$7(7-y)^2-7y^2+30y-175=0\Rightarrow y=\frac{42}{17},x=7-y=\frac{77}{17},\frac xy=\frac{11}{6},\overline{BD}:\overline{CD}=11:6$$
very good , your answer is right!