MHB Find the Sides of Triangle DEF: A Challenge!

  • Thread starter Thread starter CharlesLin
  • Start date Start date
  • Tags Tags
    Challenge Triangle
AI Thread Summary
Triangle ABC, with sides 4, 6, and 8, is similar to triangle DEF, and the task is to identify the corresponding sides of DEF. The correct corresponding sides are found by determining the scaling factor for each option, leading to the conclusion that choices A), B), C), D), and E) all represent similar triangles to ABC. Each option's sides can be calculated by dividing the sides of triangle ABC by the scaling factor, confirming their similarity. The discussion emphasizes understanding the scaling factor to identify corresponding sides accurately.
CharlesLin
Messages
16
Reaction score
0
I found this question in my study guide

triangle ABC is similar to triangle DEF. Triangle ABC has sides 4,6,8. Wich could be the corresponding sides of a triangle DEF?
Indicate all that apply

A) 1, 1.5, 2
B)1.5, 2.25, 3
C)6, 9, 12
D) 8, 12, 16
E)10, 15, 20

What I did was add the sides of ABC 4, 6, 8=18. I know then, that the addition of the sides of triangle DEF should be a factor of 18.

Following this line of thinking, my answer would be D) and E). Unfortunately my answer is incomplet, acording to my guide...
How can we approach this? What I'm not seeing?
 
Mathematics news on Phys.org
If one shape if similar to another, then all corresponding sides will have the same scaling factor. For example, if we take the sides of $\triangle ABC$ and divide them all by 4, we get choice A).

Can you find the others now?
 
thanks I think I understand. however I wounder if thers a way to calculate the scaling factor?

because how do you know which number to divide?

In other words how do I find the number that divides 4,6,8 and gives 1,1.5,2
 
CharlesLin said:
thanks I think I understand. however I wounder if thers a way to calculate the scaling factor?

because how do you know which number to divide?

In other words how do I find the number that divides 4,6,8 and gives 1,1.5,2

I would look for a potential scaling factor $k$ by taking the first datum given for each triangle (the given triangle with which we are to compare the others and then each choice of triangles in turn) and divide the choice by the given. So, for example let's look at choice A):

$$k=\frac{1}{4}=0.25$$

And then we find:

$$6k=1.5$$

$$8k=2$$

And these match the other two sides of choice A), so we know A) is a similar triangle.

So, next let's look at choice B):

1.5, 2.25, 3

$$k=\frac{1.5}{4}=\frac{3}{8}=0.375$$

Then we find:

$$6k=2.25$$

$$8k=3$$

And so we know that choice B) is also similar. Can you do the comparisons for the remaining choices?
 
so then we have

$\frac{6}{4}$=1.5=K

6(1.5)=9

8(1.5)=12 $\therefore$ C is a similar to triangle ABC$\frac{8}{4}$=4=K

2*6=12
2*8=16 D) is similar to ABC

$\frac{10}{4}$=2.5=K

2.5*6=15
2.5*8=20 E) is similar to ABC

thank you very much for helping with this one.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top