Hello, anemone!
This can be solved as an alphametic.
Find the smallest natural number ending with 6,
such that if the final 6 is moved to the front of the number ,
it is multiplied by 4.
Suppose the number has the form:- \text{. . . }A\,B\,C\,D\,E\,6
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}\text{In column-6, }E = 4
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}\text{In column-5, }D = 8
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}\text{In column-4, }C = 3
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}\text{In column-3, }B = 5
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}\text{In column-2, }A = 1
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}
\text{ta-}DAA!