MHB Find The Smallest Natural Number

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Natural
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the smallest natural number with 6 as the last digit, such that if the final 6 is moved to the front of the number it is multiplied by 4.
 
Mathematics news on Phys.org
Let's choose to let $x$ represent the string of $n$ digits to the left of 6 initially. Using the given information, we may state:

$$4(10x+6)=6\cdot10^n+x$$

After some simplification, we obtain:

$$x=\frac{2\left(10^n-4 \right)}{13}$$

By trial and error, I find the smallest value for $n$ which gives an integral value for $x$ is:

$n=5$

and thus:

$x=15384$

which means the original number is $153846$. And we find:

$$\frac{615384}{153846}=4$$
 
Bravo, MarkFL!

You deserve a round of applause for this solution!(Clapping):cool:
 
Hello, anemone!

This can be solved as an alphametic.

Find the smallest natural number ending with 6,
such that if the final 6 is moved to the front of the number ,
it is multiplied by 4.
Suppose the number has the form:- \text{. . . }A\,B\,C\,D\,E\,6

\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}\text{In column-6, }E = 4
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}\text{In column-5, }D = 8
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}\text{In column-4, }C = 3
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}\text{In column-3, }B = 5
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}\text{In column-2, }A = 1
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}

\text{ta-}DAA!
 
soroban said:
Hello, anemone!

This can be solved as an alphametic.


Suppose the number has the form:- \text{. . . }A\,B\,C\,D\,E\,6

\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}\text{In column-6, }E = 4
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}\text{In column-5, }D = 8
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}\text{In column-4, }C = 3
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}\text{In column-3, }B = 5
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}\text{In column-2, }A = 1
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}

\text{ta-}DAA!

Hi soroban,:) thank you for showing us another great method to solve this problem and you too deserve a pat on the back!:cool:(Clapping)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top