Find The Smallest Natural Number

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Natural
Click For Summary
SUMMARY

The smallest natural number that ends with 6 and, when the 6 is moved to the front, is multiplied by 4 is 153846. This problem can be solved using an alphametic approach, where the digits are systematically determined through multiplication and positional analysis. The solution involves identifying the digits A, B, C, D, and E as 1, 5, 3, 8, and 4 respectively, leading to the final number 153846.

PREREQUISITES
  • Understanding of alphametic puzzles
  • Basic multiplication principles
  • Familiarity with positional notation in numbers
  • Ability to perform systematic problem-solving
NEXT STEPS
  • Explore advanced techniques in solving alphametic puzzles
  • Learn about number theory concepts related to digit manipulation
  • Research mathematical problem-solving strategies for natural numbers
  • Practice similar problems involving digit rearrangement and multiplication
USEFUL FOR

Mathematicians, educators, puzzle enthusiasts, and anyone interested in number theory and problem-solving techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the smallest natural number with 6 as the last digit, such that if the final 6 is moved to the front of the number it is multiplied by 4.
 
Mathematics news on Phys.org
Let's choose to let $x$ represent the string of $n$ digits to the left of 6 initially. Using the given information, we may state:

$$4(10x+6)=6\cdot10^n+x$$

After some simplification, we obtain:

$$x=\frac{2\left(10^n-4 \right)}{13}$$

By trial and error, I find the smallest value for $n$ which gives an integral value for $x$ is:

$n=5$

and thus:

$x=15384$

which means the original number is $153846$. And we find:

$$\frac{615384}{153846}=4$$
 
Bravo, MarkFL!

You deserve a round of applause for this solution!(Clapping):cool:
 
Hello, anemone!

This can be solved as an alphametic.

Find the smallest natural number ending with 6,
such that if the final 6 is moved to the front of the number ,
it is multiplied by 4.
Suppose the number has the form:- \text{. . . }A\,B\,C\,D\,E\,6

\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}\text{In column-6, }E = 4
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}\text{In column-5, }D = 8
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}\text{In column-4, }C = 3
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}\text{In column-3, }B = 5
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}\text{In column-2, }A = 1
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}

\text{ta-}DAA!
 
soroban said:
Hello, anemone!

This can be solved as an alphametic.


Suppose the number has the form:- \text{. . . }A\,B\,C\,D\,E\,6

\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & E & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & E \end{array}\text{In column-6, }E = 4
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & D & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & D & 4 \end{array}\text{In column-5, }D = 8
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & C & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & C & 8 & 4 \end{array}\text{In column-4, }C = 3
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & B & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & B & 3 & 8 & 4 \end{array}\text{In column-3, }B = 5
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ A & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & A & 5 & 3 & 8 & 4 \end{array}\text{In column-2, }A = 1
\text{We have: }\;\begin{array}{cccccc} _1&_2&_3&_4&_5&_6 \\ 1 & 5 & 3 & 8 & 4 & 6 \\ \times &&&&& 4 \\ \hline 6 & 1 & 5 & 3 & 8 & 4 \end{array}

\text{ta-}DAA!

Hi soroban,:) thank you for showing us another great method to solve this problem and you too deserve a pat on the back!:cool:(Clapping)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K