Find the smallest positive integer n

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
Click For Summary
SUMMARY

The smallest positive integer \( n \) for which \( n^{16} \) exceeds \( 16^{18} \) is determined through mathematical analysis. The discussion confirms that \( n \) must be greater than \( 16^{18/16} \), simplifying to \( n > 16^{9/8} \). The value of \( 16^{9/8} \) can be calculated as \( 2^{36/8} = 2^{4.5} \), leading to \( n \) being at least 24. Participants in the forum agree on this conclusion, with kaliprasad providing a straightforward approach to the problem.

PREREQUISITES
  • Understanding of exponentiation and inequalities
  • Familiarity with the properties of powers and roots
  • Basic knowledge of integer properties
  • Ability to perform logarithmic calculations
NEXT STEPS
  • Explore the properties of exponentiation in depth
  • Learn about inequalities and their applications in number theory
  • Study logarithmic functions and their relationship to exponential growth
  • Investigate integer solutions to exponential equations
USEFUL FOR

Mathematicians, educators, students studying number theory, and anyone interested in solving exponential inequalities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the smallest positive integer $n $ for which $n^{16}$ exceeds $16^{18}$.
 
Mathematics news on Phys.org
anemone said:
Find the smallest positive integer $n $ for which $n^{16}$ exceeds $16^{18}$.
23 as below

n^16 > 16^18
or n^8 > 16^9 or 4^18
or n^4 > 4^9 or 2^18
or n^2 > 2^9 or 512
n = 22 => n^2 = 484 and n = 23 => n^2 = 529
 
Hello, anemone!

\text{Find the smallest positive integer }n
. . \text{ for which }n^{16}\text{ exceeds }16^{18}.
kaliprasad is correct.
I used a different approach.

We want: .n^{16} \;> \; 16^{18}

. . . . . . . .n^{16} \;>\; (2^4)^{18}

. . . . . . . .n^{16} \;>\;2^{72}

. . . . . . . . . n \;>\;2^{\frac{72}{16}}\;=\;2^{\frac{9}{2}}

. . . . . . . . . n \;>\; 2^{4+\frac{1}{2}} \;=\;2^4 \cdot 2^{\frac{1}{2}}

. . . . . . . . . n \;>\; 16\sqrt{2} \;=\; 22.627417

Therefore: . n \;=\;23

 
soroban said:
Hello, anemone!


kaliprasad is correct.
I used a different approach.

We want: .n^{16} \;> \; 16^{18}

. . . . . . . .n^{16} \;>\; (2^4)^{18}

. . . . . . . .n^{16} \;>\;2^{72}

. . . . . . . . . n \;>\;2^{\frac{72}{16}}\;=\;2^{\frac{9}{2}}

. . . . . . . . . n \;>\; 2^{4+\frac{1}{2}} \;=\;2^4 \cdot 2^{\frac{1}{2}}

. . . . . . . . . n \;>\; 16\sqrt{2} \;=\; 22.627417

Therefore: . n \;=\;23

above approach is more straight forward
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
4K