Find the smallest positive integer n

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
Click For Summary

Discussion Overview

The discussion centers on finding the smallest positive integer \( n \) such that \( n^{16} \) exceeds \( 16^{18} \). The scope includes mathematical reasoning and problem-solving approaches.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • Participants seek to determine the smallest positive integer \( n \) for which \( n^{16} > 16^{18} \).
  • Some participants express agreement with a proposed solution by a user named kaliprasad.
  • Others mention using different approaches to arrive at a solution, indicating varying methods of reasoning.
  • A participant suggests that a particular approach is more straightforward than others discussed.

Areas of Agreement / Disagreement

There is some agreement on the correctness of kaliprasad's approach, but multiple methods and perspectives are presented, indicating that the discussion remains somewhat contested.

Contextual Notes

Participants have not resolved the mathematical steps or assumptions necessary to arrive at a definitive answer.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the smallest positive integer $n $ for which $n^{16}$ exceeds $16^{18}$.
 
Mathematics news on Phys.org
anemone said:
Find the smallest positive integer $n $ for which $n^{16}$ exceeds $16^{18}$.
23 as below

n^16 > 16^18
or n^8 > 16^9 or 4^18
or n^4 > 4^9 or 2^18
or n^2 > 2^9 or 512
n = 22 => n^2 = 484 and n = 23 => n^2 = 529
 
Hello, anemone!

\text{Find the smallest positive integer }n
. . \text{ for which }n^{16}\text{ exceeds }16^{18}.
kaliprasad is correct.
I used a different approach.

We want: .n^{16} \;> \; 16^{18}

. . . . . . . .n^{16} \;>\; (2^4)^{18}

. . . . . . . .n^{16} \;>\;2^{72}

. . . . . . . . . n \;>\;2^{\frac{72}{16}}\;=\;2^{\frac{9}{2}}

. . . . . . . . . n \;>\; 2^{4+\frac{1}{2}} \;=\;2^4 \cdot 2^{\frac{1}{2}}

. . . . . . . . . n \;>\; 16\sqrt{2} \;=\; 22.627417

Therefore: . n \;=\;23

 
soroban said:
Hello, anemone!


kaliprasad is correct.
I used a different approach.

We want: .n^{16} \;> \; 16^{18}

. . . . . . . .n^{16} \;>\; (2^4)^{18}

. . . . . . . .n^{16} \;>\;2^{72}

. . . . . . . . . n \;>\;2^{\frac{72}{16}}\;=\;2^{\frac{9}{2}}

. . . . . . . . . n \;>\; 2^{4+\frac{1}{2}} \;=\;2^4 \cdot 2^{\frac{1}{2}}

. . . . . . . . . n \;>\; 16\sqrt{2} \;=\; 22.627417

Therefore: . n \;=\;23

above approach is more straight forward
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
4K