Find the smallest value of angle ##α + β ##

AI Thread Summary
The discussion centers on finding the smallest value of the angle α + β, derived from the equations tan(α) = a/(a + 1) and tan(β) = 1/(2a + 1). The calculations lead to the conclusion that α + β can equal π/4, but there are also infinitely many smaller negative solutions, such as -3π/4. Participants debate the clarity of the problem statement, suggesting it should specify whether the smallest positive angle is desired. The use of inverse tangent functions is emphasized, noting that they can limit the range of solutions. The conversation highlights the importance of careful algebraic manipulation and clear problem definitions in trigonometric equations.
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached.
Relevant Equations
Trigonometry.
1694235993619.png


In my approach i have,

##α + β = \tan^{-1} \left[ \dfrac{\dfrac{a}{a+1} + \dfrac{1}{2a+1}}{1-\dfrac{a}{a+1} ⋅\dfrac{1}{2a+1}}\right]##

...

##α + β = \tan^{-1} \left[ \dfrac{2a^2+3a+1}{(a+1)(2a+1)}\right] \div \left[\dfrac{2a^2+2a+1}{(a+1)(2a+1)}\right]##

##α + β = \tan^{-1} \left[\dfrac{(a+1)(2a+1)}{2a^2+2a+1}\right]##

Let

##\left[\dfrac{(a+1)(2a+1)}{2a^2+2a+1}\right]=0##

##⇒a=-1, a=-\dfrac{1}{2}##

checking my working and latex... a minute...
 
Physics news on Phys.org
chwala said:
Homework Statement: See attached.
Relevant Equations: Trigonometry.

View attachment 331693

In my approach i have,

##α + β = \tan^{-1} \left[ \dfrac{\dfrac{a}{a+1} + \dfrac{1}{2a+1}}{1-\dfrac{a}{a+1} ⋅\dfrac{1}{2a+1}}\right]##

...

##α + β = \tan^{-1} \left[ \dfrac{2a^2+3a+1}{(a+1)(2a+1)}\right] \div \left[\dfrac{2a^2+2a+1}{(a+1)(2a+1)}\right]##checking my working and latex... a minute...
Check your algebra.
 
In addition to the error that @SammyS points out in his quote of your work, there is also this:
chwala said:
Let ##\left[\dfrac{(a+1)(2a+1)}{2a^2+2a+1}\right]=0##
What justification is there for arbitrarily setting the quantity on the left side to zero?
 
chwala said:
Homework Statement: See attached.
Relevant Equations: Trigonometry.

View attachment 331693

1694235993619-png.png

In my approach i have,

##α + β = \tan^{-1} \left[ \dfrac{\dfrac{a}{a+1} + \dfrac{1}{2a+1}}{1-\dfrac{a}{a+1} ⋅\dfrac{1}{2a+1}}\right]##
Rather than jumping to the above expression, it would be helpful to those reading your thread if you would start off with something like:

##\displaystyle \tan \alpha + \beta = \dfrac{\tan \alpha + \tan \beta }{1- \tan \alpha \tan \beta} ##

##\displaystyle \quad \quad = \dfrac{\dfrac{a}{a+1} + \dfrac{1}{2a+1}}{1-\dfrac{a}{a+1} ⋅\dfrac{1}{2a+1}}##

You can simplify that expression quite a bit. Why not do that before applying the ##\displaystyle \arctan ## function?
I suggest multiplying the numerator and denominator by ##\displaystyle \ (a+1)(2a+1) \ ##, then simplify. In fact, you might not have to use the ##\displaystyle \arctan ## function at all.
 
Last edited:
chwala said:
Homework Statement: See attached.
Relevant Equations: Trigonometry.

View attachment 331693

In my approach i have,

##α + β = \tan^{-1} \left[ \dfrac{\dfrac{a}{a+1} + \dfrac{1}{2a+1}}{1-\dfrac{a}{a+1} ⋅\dfrac{1}{2a+1}}\right]##

...

##α + β = \tan^{-1} \left[ \dfrac{2a^2+3a+1}{(a+1)(2a+1)}\right] \div\left[\dfrac{2a^2+2a+1}{(a+1)(2a+1)}\right]##

##α + β = \tan^{-1} \left[\dfrac{(a+1)(2a+1)}{2a^2+2a+1}\right]##

Let

##\left[\dfrac{(a+1)(2a+1)}{2a^2+2a+1}\right]=0##

##⇒a=-1, a=-\dfrac{1}{2}##

checking my working and latex... a minute...
##α + β = \tan^{-1} \left[ \dfrac{2a^2+2a+1}{(a+1)(2a+1)}\right] \div \left[\dfrac{2a^2+2a+1}{(a+1)(2a+1)}\right]####α + β = \tan^{-1} \left[ \dfrac{2a^2+2a+1}{2a^2+3a+1}\right] × \left[\dfrac{2a^2+3a+1}{2a^2+2a+1}\right]##

##α + β = \tan^{-1} (1) = \dfrac{π}{4}##
 
Again, you don't have to start each line with "##\alpha + \beta =##" when the goal is to simplify a complicated expression. Instead, you can use = to string together equal quantities.
 
chwala said:
Homework Statement: See attached.
Relevant Equations: Trigonometry.

View attachment 331693

In my approach i have,

##α + β = \tan^{-1} \left[ \dfrac{\dfrac{a}{a+1} + \dfrac{1}{2a+1}}{1-\dfrac{a}{a+1} ⋅\dfrac{1}{2a+1}}\right]##

...

##α + β = \tan^{-1} \left[ \dfrac{2a^2+3a+1}{(a+1)(2a+1)}\right] \div \left[\dfrac{2a^2+2a+1}{(a+1)(2a+1)}\right]##

<br /> \frac{\frac{a}{a+1} + \frac{1}{2a+1}}{1 - \frac{a}{a+1}\frac{1}{2a+1}} = <br /> \frac{\frac{a}{a+1} + \frac{1}{2a+1}}{1 - \frac{a}{a+1}\frac{1}{2a+1}} \cdot \frac{(a+1)(2a+1)}{(a+1)(2a+1)} =<br /> \frac{a(2a+1) + (a+1)}{(2a+1)(a+1) - a} =<br /> \frac{ 2a^2 + 2a + 1}{2a^2 + 2a + 1}<br /> = 1.
 
pasmith said:
<br /> \frac{\frac{a}{a+1} + \frac{1}{2a+1}}{1 - \frac{a}{a+1}\frac{1}{2a+1}} =<br /> \frac{\frac{a}{a+1} + \frac{1}{2a+1}}{1 - \frac{a}{a+1}\frac{1}{2a+1}} \cdot \frac{(a+1)(2a+1)}{(a+1)(2a+1)} =<br /> \frac{a(2a+1) + (a+1)}{(2a+1)(a+1) - a} =<br /> \frac{ 2a^2 + 2a + 1}{2a^2 + 2a + 1}<br /> = 1.
@pasmith they wanted the smallest angle or you were showing something else...
 
chwala said:
@pasmith they wanted the smallest angle or you were showing something else...
The wording of the problem isn't clear, IMO. The smallest positive value for ##\alpha + \beta## is ##\frac \pi 4##. There are smaller negative values that satisfy the two given equations.
 
  • #10
Mark44 said:
The wording of the problem isn't clear, IMO. The smallest positive value for ##\alpha + \beta## is ##\frac \pi 4##. There are smaller negative values that satisfy the two given equations.
I beg to disagree. Interpreting the problem as it is one can only deduce that the required smallest angle ##=45^0##.
 
  • #11
chwala said:
I beg to disagree. Interpreting the problem as it is one can only deduce that the required smallest angle ##=45^0##.
The given equations are ##\tan(\alpha) = \frac a {a + 1}## and ##\tan(\beta) = \frac 1 {2a + 1}##. These lead to the equation ##\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}##.

As you've seen, ##\alpha + \beta = \frac \pi 4## is a solution, but there are an infinite number of solutions to this equation above, one of which is ##-\frac{3\pi} 4##, which is smaller than ##\frac \pi 4##. There are many others that are even more negative; i.e., smaller. This is why I said that the problem statement isn't clear, and would have been improved by asking for the smallest positive value of ##\alpha + \beta##.

Of course, once you introduce the inverse tangent, whose principal domain is ##(\frac{-\pi}2, \frac \pi 2)##, then there is only one solution.
 
  • #12
Mark44 said:
The given equations are ##\tan(\alpha) = \frac a {a + 1}## and ##\tan(\beta) = \frac 1 {2a + 1}##. These lead to the equation ##\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}##.

As you've seen, ##\alpha + \beta = \frac \pi 4## is a solution, but there are an infinite number of solutions to this equation above, one of which is ##-\frac{3\pi} 4##, which is smaller than ##\frac \pi 4##. There are many others that are even more negative; i.e., smaller. This is why I said that the problem statement isn't clear, and would have been improved by asking for the smallest positive value of ##\alpha + \beta##.
I beg to AGREE with Mark on this point.

In general, when using Inverse trig functions to solve trig equations, we must exercise care.

The solution to an equation such as ##\displaystyle \ \tan(\theta) = u\ ## is ##\displaystyle \ \theta = \arctan(u) +k\pi \, ,\ ## where ##k## is an integer.

Of course, once you introduce the inverse tangent, whose principal domain is ##(\frac{-\pi}2, \frac \pi 2)##, then there is only one solution.
As a general method, the following is not particularly good at getting an overall solution in closed form, but it does use the principal domain of ##\displaystyle \arctan \, .##

Alternate approach:
If ##\displaystyle \tan(\alpha) = \dfrac a {a + 1} \, , \ ## then using ##\displaystyle \arctan \ ##

we have ##\displaystyle \alpha = \arctan(\tan(\alpha)) = \arctan \, \dfrac a {a + 1} \, . \ ##

Similarly, ##\displaystyle \beta = \arctan(\tan(\beta)) = \arctan \, \dfrac {1} {2a + 1} \, . \ ##

For ##\displaystyle -1 < a < \frac {-1} 2 \, ,## each of the above expressions gives a negative result for ##\alpha## and for ##\beta##.

Using any particular value for ##a## in this interval gives a value of ##\displaystyle \, \frac {-3\pi} 4 \, ## for ##\displaystyle \alpha + \beta =\arctan \, \dfrac a {a + 1} + \arctan \, \dfrac {1} {2a + 1} \, . ##

For example, try ##\displaystyle a=\frac{-3}{4} \ ## on a scientific calculator. .
 
Last edited:
Back
Top