MHB Find the solution of the equation system

AI Thread Summary
The discussion focuses on solving a system of equations involving four variables: a, b, c, and d, with the constraint that all variables are positive. The equations relate the variables through averages and a specific linear relationship, with d defined as c plus 5600. Participants are working through the equations to find a consistent solution that satisfies all conditions. The challenge lies in the interdependence of the variables and ensuring positivity throughout the solution process. A complete solution will yield specific values for a, b, c, and d that meet the criteria set by the equations.
Albert1
Messages
1,221
Reaction score
0
find the solution of the equation system:
$\begin{cases}
a=\dfrac{b+c+d}{3}---(1)\\
b=\dfrac{a+c+d}{5}---(2)\\
c=\dfrac{a+b+d}{7}---(3)\\
d=c+5600\,\, ---(4)\end{cases}$
here $a,b,c,d>0$
 
Last edited:
Mathematics news on Phys.org
My solution:

Rewrite the given top three equations as

$3a=b+c+d\,\,\rightarrow 4a=a+b+c+d---(5)$

$5b=a+c+d\,\,\rightarrow 6b=a+b+c+d---(6)$

$7c=a+b+d\,\,\rightarrow 8c=a+b+c+d---(7)$

We get $a=2c$, and $3b=4c$

By substituting $a=2c$, $3b=4c$ and $d=c+5600$ into $3a=b+c+d$ yields

$3(2c)=\dfrac{4c}{3}+c+c+5600$ and this gives

$c=2100,\,\,a=4200,\,\,b=2800,\,\,d=7700$
 
Albert said:
find the solution of the equation system:
$\begin{cases}
a=\dfrac{b+c+d}{3}---(1)\\
b=\dfrac{a+c+d}{5}---(2)\\
c=\dfrac{a+b+d}{7}---(3)\\
d=c+5600\,\, ---(4)\end{cases}$
here $a,b,c,d>0$
let $a+b+c+d=24x$
then :$a=6x,b=4x,c=3x,d=11x=3x+5600$
$\therefore x=700$
and $a=4200,b=2800,c=2100,d=7700$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top