MHB Find the Solutions of a Quadratic Equation Using the Quadratic Formula

  • Thread starter Thread starter mathlearn
  • Start date Start date
Click For Summary
The discussion focuses on solving the quadratic equation x^2 + 4x - 8 = 0 using the quadratic formula. The solutions derived are x = 1.46 and x = -5.46, with the latter being calculated as -2 - 2√3. Participants confirm the correct application of the formula and clarify a potential typing error regarding the second solution. The conversation emphasizes the importance of accuracy in mathematical expressions. Overall, the quadratic formula effectively provides the required solutions to the equation.
mathlearn
Messages
331
Reaction score
0
By completing the square or by any other method , find the solutions of the quadratic equation , to two decimal places $x^2+4x-8=0$.

Using the quadratic formula,(Smile)

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$.

$x=\frac{-4\pm\sqrt{16+32}}{2}$.

$x=\frac{-4\pm\sqrt{48}}{2}$.

$x=\frac{-4\pm\sqrt{3}\sqrt{16}}{2}$.

$x=\frac{-4\pm 4\sqrt{3}}{2}$.

$x={-2\pm 2\sqrt{3}}$.

$x= 1.46$.

As the problem states there is another value for x which is -5.46, How to derive it using the quadratic formula ? (Happy)
 
Mathematics news on Phys.org
mathlearn said:
By completing the square or by any other method , find the solutions of the quadratic equation , to two decimal places $x^2+4x-8=0$.

Using the quadratic formula,(Smile)

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$.

$x=\frac{-4\pm\sqrt{16+32}}{2}$.

$x=\frac{-4\pm\sqrt{48}}{2}$.

$x=\frac{-4\pm\sqrt{3}\sqrt{16}}{2}$.

$x=\frac{-4\pm 4\sqrt{3}}{2}$.

$x={-2\pm 2\sqrt{3}}$.

$x= 1.46$.

As the problem states there is another value for x which is -5.46, How to derive it using the quadratic formula ? (Happy)
$x={-2\pm 2\sqrt{3}}$.

$x= 1.46$.

You have another solution: [math]-2 - 2 \sqrt{3}[/math]

-Dan
 
topsquark said:
You have another solution: [math]-2 - 2 \sqrt{2}[/math]

-Dan

(Happy) Thank you top squark

(Nod) A typing mistake I guess, [math]-2 - 2 \sqrt{3}[/math] , I guess it should be . Correct ? (Thinking)
 
Last edited:
mathlearn said:
(Happy) Thank you top squark

(Nod) A typing mistake I guess, [math]-2 - 2 \sqrt{3}[/math] , I guess it should be . Correct ? (Thinking)
Yes. Thanks for the catch!

-Dan
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K