MHB Find The Sum ∑(1/[3^n+√(3^(2017)]

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on evaluating the sum ∑(1/[3^n+√(3^(2017))]) from n=0 to 2017. Participants express appreciation for the solutions provided, particularly highlighting a contribution from a user named Sudharaka. The evaluation involves simplifying the expression and understanding the behavior of the terms as n varies. The conversation emphasizes the mathematical techniques used to arrive at the solution. Overall, the thread showcases collaborative problem-solving in evaluating a complex mathematical sum.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the sum:$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}$$
 
Mathematics news on Phys.org
lfdahl said:
Evaluate the sum:$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}$$
$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3+\sqrt{3^{2017}}}+\frac{1}{3^2+\sqrt{3^{2017}}}+\cdots+\frac{1}{3^{2015}+\sqrt{3^{2017}}}+\frac{1}{3^{2016}+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}$$

Observe that taking the first and last terms;

$$\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{\sqrt{3^{2017}}(1+\sqrt{3^{2017}})}=\frac{1}{\sqrt{3^{2017}}}$$

Generally this holds for all $i$ and $n-i$ terms taken in pairs. Thus our sum reduces to,

$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\left(\frac{2018}{2}\right)\frac{1}{\sqrt{3^{2017}}}=\frac{1009}{\sqrt{3^{2017}}}$$
 
Sudharaka said:
$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3+\sqrt{3^{2017}}}+\frac{1}{3^2+\sqrt{3^{2017}}}+\cdots+\frac{1}{3^{2015}+\sqrt{3^{2017}}}+\frac{1}{3^{2016}+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}$$

Observe that taking the first and last terms;

$$\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{\sqrt{3^{2017}}(1+\sqrt{3^{2017}})}=\frac{1}{\sqrt{3^{2017}}}$$

Generally this holds for all $i$ and $n-i$ terms taken in pairs. Thus our sum reduces to,

$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\left(\frac{2018}{2}\right)\frac{1}{\sqrt{3^{2017}}}=\frac{1009}{\sqrt{3^{2017}}}$$

What a nice solution, Sudharaka! Thankyou very much for your participation
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K