MHB Find The Sum ∑(1/[3^n+√(3^(2017)]

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the sum:$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}$$
 
Mathematics news on Phys.org
lfdahl said:
Evaluate the sum:$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}$$
$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3+\sqrt{3^{2017}}}+\frac{1}{3^2+\sqrt{3^{2017}}}+\cdots+\frac{1}{3^{2015}+\sqrt{3^{2017}}}+\frac{1}{3^{2016}+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}$$

Observe that taking the first and last terms;

$$\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{\sqrt{3^{2017}}(1+\sqrt{3^{2017}})}=\frac{1}{\sqrt{3^{2017}}}$$

Generally this holds for all $i$ and $n-i$ terms taken in pairs. Thus our sum reduces to,

$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\left(\frac{2018}{2}\right)\frac{1}{\sqrt{3^{2017}}}=\frac{1009}{\sqrt{3^{2017}}}$$
 
Sudharaka said:
$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3+\sqrt{3^{2017}}}+\frac{1}{3^2+\sqrt{3^{2017}}}+\cdots+\frac{1}{3^{2015}+\sqrt{3^{2017}}}+\frac{1}{3^{2016}+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}$$

Observe that taking the first and last terms;

$$\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{\sqrt{3^{2017}}(1+\sqrt{3^{2017}})}=\frac{1}{\sqrt{3^{2017}}}$$

Generally this holds for all $i$ and $n-i$ terms taken in pairs. Thus our sum reduces to,

$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\left(\frac{2018}{2}\right)\frac{1}{\sqrt{3^{2017}}}=\frac{1009}{\sqrt{3^{2017}}}$$

What a nice solution, Sudharaka! Thankyou very much for your participation
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top