MHB Find The Sum ∑(1/[3^n+√(3^(2017)]

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on evaluating the sum ∑(1/[3^n+√(3^(2017))]) from n=0 to 2017. Participants express appreciation for the solutions provided, particularly highlighting a contribution from a user named Sudharaka. The evaluation involves simplifying the expression and understanding the behavior of the terms as n varies. The conversation emphasizes the mathematical techniques used to arrive at the solution. Overall, the thread showcases collaborative problem-solving in evaluating a complex mathematical sum.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the sum:$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}$$
 
Mathematics news on Phys.org
lfdahl said:
Evaluate the sum:$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}$$
$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3+\sqrt{3^{2017}}}+\frac{1}{3^2+\sqrt{3^{2017}}}+\cdots+\frac{1}{3^{2015}+\sqrt{3^{2017}}}+\frac{1}{3^{2016}+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}$$

Observe that taking the first and last terms;

$$\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{\sqrt{3^{2017}}(1+\sqrt{3^{2017}})}=\frac{1}{\sqrt{3^{2017}}}$$

Generally this holds for all $i$ and $n-i$ terms taken in pairs. Thus our sum reduces to,

$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\left(\frac{2018}{2}\right)\frac{1}{\sqrt{3^{2017}}}=\frac{1009}{\sqrt{3^{2017}}}$$
 
Sudharaka said:
$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3+\sqrt{3^{2017}}}+\frac{1}{3^2+\sqrt{3^{2017}}}+\cdots+\frac{1}{3^{2015}+\sqrt{3^{2017}}}+\frac{1}{3^{2016}+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}$$

Observe that taking the first and last terms;

$$\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{3^{2017}+\sqrt{3^{2017}}}=\frac{1}{1+\sqrt{3^{2017}}}+\frac{1}{\sqrt{3^{2017}}(1+\sqrt{3^{2017}})}=\frac{1}{\sqrt{3^{2017}}}$$

Generally this holds for all $i$ and $n-i$ terms taken in pairs. Thus our sum reduces to,

$$\sum_{n=0}^{2017}\frac{1}{3^n+\sqrt{3^{2017}}}=\left(\frac{2018}{2}\right)\frac{1}{\sqrt{3^{2017}}}=\frac{1009}{\sqrt{3^{2017}}}$$

What a nice solution, Sudharaka! Thankyou very much for your participation
 

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
Replies
15
Views
2K