MHB Find the Value of $12x^4-2x^3-25x^2+9x+2017$ with $x=\dfrac {\sqrt 5 +1}{4}$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
The discussion centers around finding the value of the polynomial expression $12x^4-2x^3-25x^2+9x+2017$ with $x=\dfrac{\sqrt{5}+1}{4}$. Participants express appreciation for the solutions provided, noting similarities in their approaches. The conversation highlights the effectiveness of the methods used to evaluate the polynomial. Overall, the discussion showcases a collaborative effort to solve the mathematical problem. The value of the expression is ultimately derived through these shared solutions.
Albert1
Messages
1,221
Reaction score
0
$x=\dfrac {\sqrt 5 +1}{4}$

please find the value of $12x^4-2x^3-25x^2+9x+2017$
 
Mathematics news on Phys.org
My solution:

We're given $x=\dfrac {\sqrt 5 +1}{4}$, and this gives us $x^2=\dfrac {2x +1}{4}\rightarrow4x^2-2x=1$ $\therefore 12x^2-6x=3,\,\,4x+\dfrac{8}{x}=2,\,\,20x^2-10x=5$

We're asked to evaluate $12x^4-2x^3-25x^2+9x+2017$:

First, we let

$12x^4-2x^3-25x^2+9x=k$

Manipulating the equation above algebraically, we see that

$12x^2-2x-25+\dfrac{9}{x}=\dfrac{k}{x^2}$

$(12x^2-6x)+\left(4x+\dfrac{8}{x}\right)+\dfrac{1}{x}-25=\dfrac{k}{x^2}$

$3+2+\dfrac{1}{x}-25=\dfrac{k}{x^2}$

$k=-(20x^2-10x)=-5$

$\therefore 12x^4-2x^3-25x^2+9x+2017=k+2017=-5+2017=2012$
 
we have $4x-1 = \sqrt(5)$

squaring and reordering we get
$16x^2-8x -4-0$
or $4x^2-2x-1 = 0 \cdots (1)$

now deviding $12x^4-2x^3-25x^2+ 9x + 2017$ by $(4x^2-2x-1)$ we find that

$12x^4-2x^3-25x^2+9x+2017=(4x^2-2x-1)(3x^2+x+5) + 2012= 2012$
 
A somewhat tedious but perhaps mildly interesting solution:

$$x=\frac{\sqrt5+1}{4}=\frac12\varphi$$ where $$\varphi$$ is the golden ratio.

Identity: $$\varphi^2=\varphi+1$$

$$12x^4-2x^3-25x^2+9x+2017$$

$$=12\left[\frac14(\varphi+1)\right]^2-\frac14(\varphi^2+\varphi)-25\left[\frac14(\varphi+1)\right]+\frac92\varphi+2017$$

$$=\frac34(3\varphi+2)-\frac14(2\varphi+1)-\frac{25}{4}(\varphi+1)+\frac92\varphi+2017$$

$$=\frac94\varphi+\frac32-\frac12\varphi-\frac14-\frac{25}{4}\varphi-\frac{25}{4}+\frac92\varphi+2017$$

$$=2012$$
 
greg1313 :
yes, very good and very interesting solution !
mine is the same as kaliprasad's solution
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
990
  • · Replies 4 ·
Replies
4
Views
2K