MHB Find the values of the parameter "q"

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Parameter
AI Thread Summary
The discussion focuses on finding the values of the parameter "q" for which the equation has exactly three distinct real solutions. The solutions identified are q=9 and q=34. The approach involves rewriting the equation and analyzing the discriminants of the resulting quadratic factors. A key insight is recognizing that a repeated root can occur once in each factor, leading to the additional solution q=34 when both factors equal 136-4q=0. The conversation highlights the collaborative nature of problem-solving in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

Problem:

Find the sum of all positive real values of the parameter $q$ for which the equation $(x^2+4x+4+136)^2=16q(5x^2+4x+136)$ has exactly three distinct real solutions.

Answer:
$q=9$ and $q=34$.

I am aware the question is actually asking us to find all possible values of $q$ when the given quartic equation has one repeated real root, and two other distinct real roots.

Attempt:

The original equation $(x^2+4x+4q+136)^2=16q(5x^2+4x+136)$ can be rewritten as

$(x^2+4x+136+4q)^2=16q(4x^2+x^2+4x+136)$

If I let $k=x^2+4x+136$, the equation above becomes

$(k+4q)^2=16q(4x^2+k)$

Expanding both sides of the equation and then rearranging them as a quadratic equation in terms of $k$, we have

$k^2+8qk+16q^2=64qx^2+16qk$

$k^2-8qk-64qx^2+16q^2=0$

$(k-4q)^2-16q^2-64qx^2+16q^2=0$

$(k-4q)^2-64qx^2=0$

$(k-4q-8x\sqrt{q})(k-4q+8x\sqrt{q})=0$

Replacing the expression for $k$ back into the equation above, we get

$(x^2+4x+136-4q-8x\sqrt{q})(x^2+4x+136-4q+8x\sqrt{q})=0$

And in order to satisfy the requirement set by the problem and to find all possible values of $q$, we can do so by equating the discriminants of the quadratic factors, one after another and we should expect two $q$ values to be found.

Hence, by equating the discriminant for the first factor $x^2+4x+136-4q-8x\sqrt{q}=0$ to zero, we obtain:

$(4-8\sqrt{q})^2-4(136-4q)=0$

$\sqrt{q}=3$ or $\sqrt{q}=-2.2$ and since $\sqrt{q}>0$, we get $q=9$ as one of the solutions.

Now, if we set the discriminant of the second factor as zero, we get:

$(4+8\sqrt{q})^2-4(136-4q)=0$

$\sqrt{q}=-3$ or $\sqrt{q}=2.2$ and since $\sqrt{q}>0$, we get $q=4.84$ as the other solution.

I checked the answer when $q=2.2$ and we would only get all 4 complex roots if $q=2.2$ but with $q=9$, everything is fine as is.

My question is, I don't know how to find the answer where $q=34$...any ideas?

By the way, I know there must be other ways to approach this problem, so if you don't wish to go through my silly attempt, I welcome you to post another method to solve the problem and I will appreciate whatever help that you are going to offer me.

Thanks in advance.
 
Mathematics news on Phys.org
anemone said:
Problem:

Find the sum of all positive real values of the parameter $q$ for which the equation $(x^2+4x+4+136)^2=16q(5x^2+4x+136)$ has exactly three distinct real solutions.

Answer:
$q=9$ and $q=34$.

$\vdots$

... we get

$(x^2+4x+136-4q-8x\sqrt{q})(x^2+4x+136-4q+8x\sqrt{q})=0$

And in order to satisfy the requirement set by the problem and to find all possible values of $q$, we can do so by equating the discriminants of the quadratic factors, one after another and we should expect two $q$ values to be found.

Hence, by equating the discriminant for the first factor $x^2+4x+136-4q-8x\sqrt{q}=0$ to zero, we obtain:

$(4-8\sqrt{q})^2-4(136-4q)=0$

$\sqrt{q}=3$ or $\sqrt{q}=-2.2$ and since $\sqrt{q}>0$, we get $q=9$ as one of the solutions.

Now, if we set the discriminant of the second factor as zero, we get:

$(4+8\sqrt{q})^2-4(136-4q)=0$

$\sqrt{q}=-3$ or $\sqrt{q}=2.2$ and since $\sqrt{q}>0$, we get $q=4.84$ as the other solution.

I checked the answer when $q=2.2$ and we would only get all 4 complex roots if $q=2.2$ but with $q=9$, everything is fine as is.

My question is, I don't know how to find the answer where $q=34$...any ideas?
I had to spend over four hours in trains today, going to and from a meeting in London, and I spent all that time struggling with this problem. I got close to a solution, but your approach is far neater than mine.

The missing solution comes this way: In the equation $(x^2+4x+136-4q-8x\sqrt{q})(x^2+4x+136-4q+8x\sqrt{q})=0,$ you looked at the case where the repeated root comes in the first of the two factors, and when it comes in the second factor, but you overlooked the possibility that it might come once in each factor. That can only happen when the two factors are equal, and that in turn can only happen when $8x\sqrt{q}=0.$ That implies $x=0$, and the two factors then both reduce to $136 - 4q=0$, or $q=34.$
 
Hi Opalg,

Thank you so much for your reply.

Ah! I missed checking the likelihood that the repeated root might occur once in each factor and I wouldn't have thought of this if you hadn't pointed it out for me. I am so grateful that I can always depend on MHB to find for the missing part of the "math puzzle"!

When I read that you spent all the time sitting in the train struggling with this problem, it melts my heart so thoroughly. I hope there is a day where I can buy you a coffee (or tea, whatever that you would like to) or deliver one to your house, a cup of hot coffee that is specifically just for you! :D
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top