MHB Find Value of $x-y+z$ in $x,y,z \in N$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
To solve for the value of $x - y + z$ given the equations $3x - 4y = 0$ and $x + y + z = \sqrt{x + y + z - 3} + 15$, the first equation can be rearranged to express $y$ in terms of $x$. Substituting this expression into the second equation allows for simplification, ultimately leading to a quadratic equation in terms of $z$. Solving this yields specific integer values for $x$, $y$, and $z$. The final calculation of $x - y + z$ results in a definitive value.
Albert1
Messages
1,221
Reaction score
0
$x,y,z \in N\\
\left\{\begin{matrix}
3x-4y=0---(1)\\
x+y+z=\sqrt {x+y+z-3}+15---(2)
\end{matrix}\right.$
find the value of $x-y+z=?$
 
Mathematics news on Phys.org
Albert said:
$x,y,z \in N\\
\left\{\begin{matrix}
3x-4y=0---(1)\\
x+y+z=\sqrt {x+y+z-3}+15---(2)
\end{matrix}\right.$
find the value of $x-y+z=?$

from 2nd relation we get $x+y+z=19$

from (1) and above

$ x = 4, y = 3, z = 12 $ giving $x-y+z = 13$

or
$x = 8, y = 6, z = 5$ giving $x-y+z = 7$
 
kaliprasad said:
from 2nd relation we get $x+y+z=19$
That's clever. The 2nd relation is $x+ y+ z= \sqrt{x+ y+ z- 3}+ 15$. Subtracting 3 from both sides, $x+ y+ z- 3= \sqrt{x+ y+ z- 3}+ 13$. Letting u= x+ y+ z- 3, We can write that as $u= \sqrt{u}+ 12$. And that is the same as $\sqrt{u}= u- 12$. Squaring both sides, $u= (u- 12)^2= u^2- 24u+ 144$ s that $u^2- 25u+ 144= (u- 16)(u- 9)= 0$. The roots of that are u= 16 and u= 9. If u= 16 then x+ y+ z= u+ 3= 19. If u= 9 the x+ y+ z= u+ 3= 12.

Having squared both sides we need to check for spurious solutions that might have been introduced. If x+ y+ z= 19, then the equation becomes $19= \sqrt{19- 3}+15= 4+ 15$ which is correct. If x+ y+ z= 12, then the equation becomes $12= \sqrt{12- 3}+ 15= 3+ 15$ which is not correct (we got this "spurious solution" because -3+ 15 is equal to 12.)

I'm impressed!

from (1) and above

$ x = 4, y = 3, z = 12 $ giving $x-y+z = 13$

or
$x = 8, y = 6, z = 5$ giving $x-y+z = 7$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top