MHB Find Vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ Given Dot Products

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Vectors
Click For Summary
The discussion focuses on finding three vectors, $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_3}$, based on given dot products. It is established that $\vec{v_1}$ can be chosen with a length of 2, while $\vec{v_2}$ must have a length of $\sqrt{2}$ and a specific dot product with $\vec{v_1}$. One participant suggests selecting $\vec{v_1} = (2,0,0)$ and finds that $\vec{v_2}$ can be determined as $(-1, 1, 0)$. The conversation concludes with the understanding that the vectors can be mirrored or rotated to generate additional solutions. The problem-solving approach emphasizes the flexibility in choosing the vectors while adhering to the constraints provided.
Saitama
Messages
4,244
Reaction score
93
Problem:
Find $\vec{v_1}$,$\vec{v_2}$ and $\vec{v_3}$ given that:

$$\vec{v_1}\cdot \vec{v_1}=4$$
$$\vec{v_1}\cdot \vec{v_2}=-2$$
$$\vec{v_1}\cdot \vec{v_3}=6$$
$$\vec{v_2}\cdot \vec{v_2}=2$$
$$\vec{v_2}\cdot \vec{v_3}=-5$$
$$\vec{v_3}\cdot \vec{v_3}=29$$

Attempt:
Assuming the vector $\vec{v_i}$ as $x_i \hat{i}+y_i \hat{j}+z_i \hat{k}$ is definitely not a good idea.

I am really clueless on how to tackle this problem. I can see that adding the second and fourth equation gives $\vec{v_2}\cdot (\vec{v_1}+\vec{v_2})=0$. This means that $\vec{v_1}$ is perpendicular to $\vec{v_1}+\vec{v_2}$ but I am not sure if this helps. I need a few hints to begin with.

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
Pranav said:
Problem:
Find $\vec{v_1}$,$\vec{v_2}$ and $\vec{v_3}$ given that:

$$\vec{v_1}\cdot \vec{v_1}=4$$
$$\vec{v_1}\cdot \vec{v_2}=-2$$
$$\vec{v_1}\cdot \vec{v_3}=6$$
$$\vec{v_2}\cdot \vec{v_2}=2$$
$$\vec{v_2}\cdot \vec{v_3}=-5$$
$$\vec{v_3}\cdot \vec{v_3}=29$$

Attempt:
Assuming the vector $\vec{v_i}$ as $x_i \hat{i}+y_i \hat{j}+z_i \hat{k}$ is definitely not a good idea.

I am really clueless on how to tackle this problem. I can see that adding the second and fourth equation gives $\vec{v_2}\cdot (\vec{v_1}+\vec{v_2})=0$. This means that $\vec{v_1}$ is perpendicular to $\vec{v_1}+\vec{v_2}$ but I am not sure if this helps. I need a few hints to begin with.

Any help is appreciated. Thanks!

Hey Pranav! ;)

There is a bit of freedom here.
You can pick any vector for $\vec v_1$ as long as its length is $2$.
After that, you can pick any vector for $\vec v_2$ as long as its length is $\sqrt 2$ and its dot product with $\vec v_1$ is $-2$.
After that we can see what remains for $\vec v_3$.

So let's pick $\vec v_1 = (2,0,0)$. That is with a zero component in both y- and z-directions.
And let's pick the z-coordinate of $\vec v_2$ zero.
Can you find a $\vec v_2$ that fits?
And after that a $\vec v_3$?

When you have found a solution, you can rotate or mirror that solution anyway you want (or a combination of those), and you'll have another solution.
 
I like Serena said:
Hey Pranav! ;)

There is a bit of freedom here.
You can pick any vector for $\vec v_1$ as long as its length is $2$.
After that, you can pick any vector for $\vec v_2$ as long as its length is $\sqrt 2$ and its dot product with $\vec v_1$ is $-2$.
After that we can see what remains for $\vec v_3$.

So let's pick $\vec v_1 = (2,0,0)$. That is with a zero component in both y- and z-directions.
And let's pick the z-coordinate of $\vec v_2$ zero.
Can you find a $\vec v_2$ that fits?
And after that a $\vec v_3$?
When you have found a solution, you can rotate or mirror that solution anyway you want (or a combination of those), and you'll have another solution.

Hi ILS! :)

Let $\vec{v_2}=x_2\hat{i}+y_2\hat{j}$. Then, from the second equation we have $2x_2=-2 \Rightarrow x_2=-1$, hence $y_2$ must be either $1$ or $-1$. Let us pick $y_2=1$.

I similarly found $\vec{v_3}$ (with $y_2=1$) equal to $3\hat{i}-2\hat{j}+4\hat{k}$.

...(or a combination of those), and you'll have another solution.
I am not sure what this means. Do you say that $v_1+v_2=\hat{i}+\hat{j}$ is also a solution to the given equation?

Thanks!
 
Pranav said:
Hi ILS! :)

Let $\vec{v_2}=x_2\hat{i}+y_2\hat{j}$. Then, from the second equation we have $2x_2=-2 \Rightarrow x_2=-1$, hence $y_2$ must be either $1$ or $-1$. Let us pick $y_2=1$.

I similarly found $\vec{v_3}$ (with $y_2=1$) equal to $3\hat{i}-2\hat{j}+4\hat{k}$.

Good!
I am not sure what this means. Do you say that $v_1+v_2=\hat{i}+\hat{j}$ is also a solution to the given equation?

Thanks!

No. I mean that you can mirror all three vectors, and then rotate all three vectors, and the result will be another solution.
If you rotate all 3 vectors together, their lengths and their directions relative to each other remain the same.
 
I like Serena said:
No. I mean that you can mirror all three vectors, and then rotate all three vectors, and the result will be another solution.
If you rotate all 3 vectors together, their lengths and their directions relative to each other remain the same.

Thanks a lot ILS! :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
26
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K