MHB Find Work to Empty Conical Frustum Tank - Juan's Question at Yahoo Answers

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A tank is full of water. Find the work required to pump the water out of the spout. Use the fact that water...?

A tank is full of water. Find the work required to pump the water out of the spout. Use the fact that water weighs 62.5 lb/ft3. (Assume r = 6 ft, R = 12 ft, and h = 24 ft.)

*Picture*

View attachment 1237

___ft-lb___6.4, 5

I have posted a link there to this topic so the OP can see my work.
 

Attachments

  • juancone.jpg
    juancone.jpg
    4.1 KB · Views: 157
Mathematics news on Phys.org
Hello Juan,

Let's orient a vertical $y$-axis coinciding with the axis of symmetry of the tank, with the origin at the top surface and the positive direction is down. Let us the decompose the tank into horizontal circular slices, where the radius of each slice decreases linearly as $y$ increases. We may let $r_y$ denote the radius of an arbitrary slice.

We know:

$$r_y(0)=R,\,r_y(h)=r$$

Hence:

$$r_y(y)=\frac{r-R}{h}y+R$$

And so the volume of the arbitrary slice is:

$$dV=\pi\left(\frac{r-R}{h}y+R \right)^2\,dy$$

Now, the weight $w$ of this slice can be found from the fact that weight is mass times the acceleration due to gravity, and mass is mass density $\rho$ times volume. Thus:

$$w=mg=g\rho dV=\pi g\rho\left(\frac{r-R}{h}y+R \right)^2\,dy$$

Now, the work done to lift this slice to the top of the tank is:

$$dW=Fd$$

Where the applied force $F$ is the weight of the slice, and the distance over which this force is applied is $y$. And so we have:

$$dW=\pi g\rho y\left(\frac{r-R}{h}y+R \right)^2\,dy$$

Expanding the square, and distributing the $y$, we have:

$$dW=\pi g\rho\left(\left(\frac{r-R}{h} \right)^2y^3+\frac{2R(r-R)}{h}y^2+R^2y \right)\,dy$$

Summing up all the work elements by integrating, we obtain:

$$W=\pi g\rho\int_0^h \left(\frac{r-R}{h} \right)^2y^3+\frac{2R(r-R)}{h}y^2+R^2y\,dy$$

$$W=\pi g\rho\left[\left(\frac{r-R}{2h} \right)^2y^4+\frac{2R(r-R)}{3h}y^3+\frac{R^2}{2}y^2 \right]_0^h=\pi g\rho\left(\left(\frac{r-R}{2h} \right)^2h^4+\frac{2R(r-R)}{3h}h^3+\frac{R^2}{2}h^2 \right)$$

$$W=\pi g\rho h^2\left(\left(\frac{r-R}{2} \right)^2+\frac{2R(r-R)}{3}+\frac{R^2}{2} \right)=\frac{\pi g\rho h^2}{12}\left(3r^2+2rR+R^2 \right)$$

Using the given data:

$$g\rho=62.5\frac{\text{lb}}{\text{ft}^3},\,h=24 \text{ ft},\,r=6\text{ ft},\,R=12\text{ ft}$$

we find:

$$W=\frac{\pi\left(62.5\frac{\text{lb}}{\text{ft}^3} \right)\left(24\text{ ft} \right)^2}{12}\left(3\left(6\text{ ft} \right)^2+2\left(6\text{ ft} \right)\left(12\text{ ft} \right)+\left(12\text{ ft} \right)^2 \right)=1188000\pi\text{ ft}\cdot\text{lb}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top