MHB Find Work to Empty Conical Frustum Tank - Juan's Question at Yahoo Answers

Click For Summary
The discussion focuses on calculating the work required to pump water out of a conical frustum tank. The tank's dimensions are provided, and the weight of water is stated as 62.5 lb/ft³. The approach involves decomposing the tank into horizontal slices, determining the volume and weight of each slice, and integrating to find the total work done. The final formula for work is derived, resulting in a value of 1188000π ft·lb. This calculation illustrates the application of calculus in solving real-world physics problems related to fluid dynamics.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A tank is full of water. Find the work required to pump the water out of the spout. Use the fact that water...?

A tank is full of water. Find the work required to pump the water out of the spout. Use the fact that water weighs 62.5 lb/ft3. (Assume r = 6 ft, R = 12 ft, and h = 24 ft.)

*Picture*

View attachment 1237

___ft-lb___6.4, 5

I have posted a link there to this topic so the OP can see my work.
 

Attachments

  • juancone.jpg
    juancone.jpg
    4.1 KB · Views: 161
Mathematics news on Phys.org
Hello Juan,

Let's orient a vertical $y$-axis coinciding with the axis of symmetry of the tank, with the origin at the top surface and the positive direction is down. Let us the decompose the tank into horizontal circular slices, where the radius of each slice decreases linearly as $y$ increases. We may let $r_y$ denote the radius of an arbitrary slice.

We know:

$$r_y(0)=R,\,r_y(h)=r$$

Hence:

$$r_y(y)=\frac{r-R}{h}y+R$$

And so the volume of the arbitrary slice is:

$$dV=\pi\left(\frac{r-R}{h}y+R \right)^2\,dy$$

Now, the weight $w$ of this slice can be found from the fact that weight is mass times the acceleration due to gravity, and mass is mass density $\rho$ times volume. Thus:

$$w=mg=g\rho dV=\pi g\rho\left(\frac{r-R}{h}y+R \right)^2\,dy$$

Now, the work done to lift this slice to the top of the tank is:

$$dW=Fd$$

Where the applied force $F$ is the weight of the slice, and the distance over which this force is applied is $y$. And so we have:

$$dW=\pi g\rho y\left(\frac{r-R}{h}y+R \right)^2\,dy$$

Expanding the square, and distributing the $y$, we have:

$$dW=\pi g\rho\left(\left(\frac{r-R}{h} \right)^2y^3+\frac{2R(r-R)}{h}y^2+R^2y \right)\,dy$$

Summing up all the work elements by integrating, we obtain:

$$W=\pi g\rho\int_0^h \left(\frac{r-R}{h} \right)^2y^3+\frac{2R(r-R)}{h}y^2+R^2y\,dy$$

$$W=\pi g\rho\left[\left(\frac{r-R}{2h} \right)^2y^4+\frac{2R(r-R)}{3h}y^3+\frac{R^2}{2}y^2 \right]_0^h=\pi g\rho\left(\left(\frac{r-R}{2h} \right)^2h^4+\frac{2R(r-R)}{3h}h^3+\frac{R^2}{2}h^2 \right)$$

$$W=\pi g\rho h^2\left(\left(\frac{r-R}{2} \right)^2+\frac{2R(r-R)}{3}+\frac{R^2}{2} \right)=\frac{\pi g\rho h^2}{12}\left(3r^2+2rR+R^2 \right)$$

Using the given data:

$$g\rho=62.5\frac{\text{lb}}{\text{ft}^3},\,h=24 \text{ ft},\,r=6\text{ ft},\,R=12\text{ ft}$$

we find:

$$W=\frac{\pi\left(62.5\frac{\text{lb}}{\text{ft}^3} \right)\left(24\text{ ft} \right)^2}{12}\left(3\left(6\text{ ft} \right)^2+2\left(6\text{ ft} \right)\left(12\text{ ft} \right)+\left(12\text{ ft} \right)^2 \right)=1188000\pi\text{ ft}\cdot\text{lb}$$
 

Similar threads

Replies
1
Views
4K
Replies
1
Views
6K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K