MHB Find x- and y- Intercepts....4

  • Thread starter Thread starter mathdad
  • Start date Start date
mathdad
Messages
1,280
Reaction score
0
Find the x- and y-intercepts.

y = 2x^5 - 5x^4 + 5

Let x = 0

y = 2(0)^5 - 5(0)^4 + 5

y = 5

The y-intercept is y = 5 and it takes place at the point (0,5).

Let y = 0 to find the x-intercept.

0 = 2x^5 - 5x^4 + 5

I am stuck here.
 
Mathematics news on Phys.org
I don't think $0 = 2x^5 - 5x^4 + 5$ has roots that can be expressed in terms of elementary functions.
 
More "nice" roots, right?
 
There's always a solution(s) for polynomials of degree 4 and lower (if one includes complex-valued results). Once we reach a degree of 5 we are, in general, out of luck (so to speak) but there are some quintics (polynomials of degree 5) that are solvable. I don't think the one we have here is, though.

A useful online tool is W|A (Wolfram Alpha). I will suggest that you familiarize yourself with this tool as it can aid insight into problems that may be difficult. :D
 
For any polynomial of degree 3 or more that doesn't succumb to the rational roots theorem to get down to a combination of linear/quadratic factors, I rely on numeric root finding techniques to approximate the real roots (and those are the only roots we need for finding intercepts). :D
 
You are saying that "nice" roots in this case require advanced techniques. I am not there yet. I get it now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
24
Views
2K
Back
Top