MHB Find $x$ for $\sum_{k=1}^{x}\lfloor{\sqrt[4]{k}}\rfloor=2x$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion focuses on finding integer values of \( x \) that satisfy the equation \( \sum_{k=1}^{x}\lfloor{\sqrt[4]{k}}\rfloor=2x \). The sequence \( a_k \) is defined based on ranges of \( k \), where \( a_k = 1 \) for \( 1 \leq k \leq 15 \), \( a_k = 2 \) for \( 16 \leq k \leq 80 \), and \( a_k = 3 \) for \( 81 \leq k \leq 255 \). Calculations show that \( S_{15} = 15 \) and \( S_{80} = 145 \), leading to the conclusion that for \( n > 80 \), \( S_n \) increases by 3 for each increment in \( n \). The only solution found is \( n = 95 \), which satisfies the equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all integers $x$ such that $\left\lfloor{\sqrt[4]{1}}\right\rfloor+\left\lfloor{\sqrt[4]{2}}\right\rfloor+\left\lfloor{\sqrt[4]{3}}\right\rfloor+\cdots+\left\lfloor{\sqrt[4]{x}}\right\rfloor=2x$.
 
Mathematics news on Phys.org
anemone said:
Find all integers $x$ such that $\left\lfloor{\sqrt[4]{1}}\right\rfloor+\left\lfloor{\sqrt[4]{2}}\right\rfloor+\left\lfloor{\sqrt[4]{3}}\right\rfloor+\cdots+\left\lfloor{\sqrt[4]{x}}\right\rfloor=2x$.

[sp]Writing the sequence...

$\displaystyle S_{n} = \sum_{k=1}^{n} a_{k}\ (1)$

... where...

$\displaystyle a_{k} = 1\ \text {if}\ 1 \le k \le 15,\ = 2\ \text{if}\ 16 \le k \le 80,\ = 3\ \text{if}\ 81 \le k \le 255, ...$

... we have to search the value of n for which $\displaystyle S_{n}= 2\ n$. It is easy to see that $\displaystyle S_{15} = 15$ and $\displaystyle S_{80}= 15 + 2\ 65 = 145$. For n> 80 $\displaystyle S_{n}$ increases by 3 at each step so that the value of n for which is $\displaystyle S_{n}= 2\ n$ will be 80 + 160 - 145 = 95. Clearly that is the only solution to the problem...[/sp]

Kind regards

$\chi$ $\sigma$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
943
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K