MHB Find x in [0,2π] to Solve Inequality

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all $$x$$ in the interval $$[0, 2\pi] $$ which satisfies $$2\cos(x) \le \left|\sqrt{1+\sin (2x)}-\sqrt{1-\sin (2x)} \right|\le \sqrt{2}$$
 
Mathematics news on Phys.org
anemone said:
Find all $$x$$ in the interval $$[0, 2\pi] $$ which satisfy $$2\cos x \le |\sqrt{1+\sin (2x)}-\sqrt{1-\sin (2x)}|\le \sqrt{2}$$

If correct, the problem is set up as 'non challenge question' because the requirement is reduced to... $\displaystyle \cos x \le \frac{1}{\sqrt{2}}\ (1)$ ... and the (1) is satisfied for $\displaystyle \frac{\pi}{4} \le x \le \frac{7}{4} \pi$... Kind regards $\chi$ $\sigma$
 
anemone said:
Find all $$x$$ in the interval $$[0, 2\pi] $$ which satisfies $$2\cos(x) \le \left|\sqrt{1+\sin (2x)}-\sqrt{1-\sin (2x)} \right|\le \sqrt{2}$$

one solution cos x <= 0

so x is between pi/2 and - 3pi/2

second case cos x > = 0 and sin x >= 0

now sin x < cos x gives
cos x < 1/2 | cos x + sin x - ( cos x - sin x) <= 1/ sqrt(2)

or cos x < sin x <= 1/sqrt(2)

cos x >= 1/sqrt(2) => sin x >= 1/ sqrt(2) so no solution

cos x > 0 and sin x >= cos x gives cos x <= sqrt(2)

siimiliarly ranges sin x < 0 2 ranges | sin x | < cos x and | sin x | > cos x need to be anlaysed

by symetry we get cos <= 1/ sqrt(2)so solution set cos^1 (1/ 2sqrt(2) to 2pi - cos^1 (1/2sqrt(2))
or between pi/4 and 7pi/4edited the solution as there was a mistake and it is corrected
 
Last edited:
anemone said:
Find all $$x$$ in the interval $$[0, 2\pi] $$ which satisfies $$2\cos(x) \le \left|\sqrt{1+\sin (2x)}-\sqrt{1-\sin (2x)} \right|\le \sqrt{2}$$

Squaring the expression in the middle gives:
\begin{aligned}\left|\sqrt{1+\sin (2x)}-\sqrt{1-\sin (2x)} \right|^2
&= (1+\sin (2x))+(1-\sin (2x)) - 2 \sqrt{(1+\sin (2x))(1-\sin (2x))} \\
&= 2 - 2 \sqrt{1-\sin^2(2x)} \\
&= 2 - 2 \sqrt{\cos^2(2x)} \\
&= 2 - 2 |\cos(2x)| \\
&= 2 - 2 |2\cos^2 x - 1|
\end{aligned}

If $\cos(2x)> 0$, this reduces to $4 - 4 \cos^2 x$.
If $\cos(2x)\le 0$, this reduces to $4 \cos^2 x$.

The latter case is a 1-1 match for the squared left hand side.
Checking out the cases where $\cos x > 0$ respectively $\cos x \le 0$ yields that the first inequality is always true.

chisigma already gave the solution when looking at the remaining inequalities.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
1K
Replies
5
Views
1K
Replies
1
Views
934
Replies
1
Views
1K
Replies
7
Views
2K
Replies
4
Views
1K
Back
Top