MHB Find Zeros of $2x^3+5x^2-28x-15$ with Synthetic Division

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion focuses on finding the zeros of the polynomial function g(x) = 2x^3 + 5x^2 - 28x - 15 using synthetic division and the quadratic formula. Synthetic division reveals a factor of (x - 3), leading to a quadratic equation 2x^2 + 11x + 5. The correct application of the quadratic formula results in the roots x = -5 and x = -0.5. The final factorization of g(x) is presented as (x + 10)(x + 0.5)(x - 3). The importance of correctly applying the quadratic formula is emphasized throughout the discussion.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{factor}$
$g(x)=2x^3+5x^2-28x-15$
$\text{synthetic division}$
$\begin{array}{c|rr}
& 2 & 5 &-28 &-15 \\
&&6&33 & 15\\ \hline
3&2&11&5&0
\end{array}$
$\text{thus }\\$
$2x^2+11x+5$
$\text{use quadradic formula}$
$\begin{align*}
x=\frac{-(11)\pm\sqrt{(11)^2-4(2)(5)}}{2(1)}
&=\frac{-11\pm\sqrt{81}}{2}
=\frac{-11\pm9}{2}
\end{align*}$
$x=-10,-1 \quad g(x)=(x+10)(x+1)(x-3)$
hopefully
comment?
 
Last edited:
Mathematics news on Phys.org
Check your application of the quadratic formula, or simply factor. :)
 
a=2 not 1

use quadradic formula
$\begin{align*}
x=\frac{-(11)\pm\sqrt{(11)^2-4(2)(5)}}{2(2)}
&=\frac{-11\pm\sqrt{81}}{4}
=\frac{-11\pm9}{4}
\end{align*}$
$\text{then $x=-5,-\frac{1}{2}$
so
$g(x)=(x+10)(x+\frac{1}{2})(x-3)$}$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K