MHB Finding a Basis for a Linear Subspace Orthogonal to a Given Point P in R^3

JWS1
Messages
2
Reaction score
0
I have a given point (vector) P in R^3 and a 2-dimensional linear subspace S (a plane) which consists of all elements of R^3 orthogonal to P.
The point P itself is element of S.

So I can write

P' ( x - P ) = 0

to characterize all such points x in R^3 orthogonal to P. P' means the transpose of P.

My problem is to find a basis of S. This basis should depend on point P.

I tried to find such a basis (alpha,beta) using the parameter form of the plane

x = P + alpha u + beta v

but I am unable to find two vectors u and v orthogonal to P.

I expect that this problem should be easy but I am nevertheless unable to solve it :(

Please help me a bit.
 
Physics news on Phys.org
Technically a "point" is not a "vector" but, yes, given a point, $p= (x_0, y_0, z_0)$ we can assign to to it the vector from (0, 0 0) to p, $<x_0, y_0, z_0>$. If <x, y, z> is orthogonal to that vector then $xx_0+ yy_0+ zz_0= 0$ so, solving for z, $z= \frac{xx_0+ yy_0}{z_0}$ (this is assuming $z_0\ne 0$. If it is choose to solve for x or y instead. If all three of $x_0$, $y_0$, and $z_0$, this is the zero vector and all vectors are orthogonal to it.)

Letting x= 0, $\left<0, y, \frac{y_0}{z_0}y\right>$ and taking y= 0, $\left<x, 0, \frac{x_0}{z_0}x\right>$.

Those two vectors are orthogonal to p. You should be able to show that they are independent and so a basis for the subspace. Choosing a value for y in the first and a value for x in the second gives vectors of specific length. They can be chosen so that the vectors have length one.
 
Thanks for your reply - it helped me out of my blockade.
I was too fixed at the implicit characterisation of orthogonal points to P by the equation

P' ( x - P ) = 0.

You are right, exept a typo in the sign for z in your formula.

Points or vectors, that is an old discussion. "Vectors" are often used in physics and "points" are often used in math.
As you know in math a "vector space" consists of some set with an additional algebraic structure. His elements (for example real numbers
complex numbers or integrable functions) are often called points.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top