Finding a Parametric Solution for Particle Trajectory in Magnetic Field

Click For Summary

Homework Help Overview

The discussion revolves around finding a parametric solution for the trajectory of a charged particle moving in a uniform magnetic field, taking into account the effects of air resistance. The problem is situated within the context of classical mechanics, specifically involving the Lorentz force and Newton's second law.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the relationship between acceleration and velocity, particularly focusing on the angle between them. There are attempts to derive expressions for the trajectory using coupled differential equations. Some participants question the assumptions made regarding the motion and the effects of air resistance.

Discussion Status

The discussion is ongoing, with participants sharing insights and approaches to the problem. Some have expressed appreciation for the complexity of the problem, while others are dissecting the provided solutions to understand the underlying principles better.

Contextual Notes

One participant notes that the problem is inspired by another thread, indicating a connection to previous discussions. There is mention of a specific homework statement regarding the trajectory of a particle with a fixed angle of acceleration relative to velocity, which may influence the interpretation of the problem.

kuruman
Science Advisor
Homework Helper
Education Advisor
Insights Author
Gold Member
2025 Award
Messages
15,894
Reaction score
9,059
Homework Statement
Find the trajectory of a particle the acceleration of which is fixed at angle ##\varphi > \pi/2## relative to the velocity.
Relevant Equations
Newton's second law.
This is a solution to a problem inspired by another thread. It is posted here to separate it from the multiple choice question which was the subject of that thread. A parametric solution for the trajectory can be found quite easily if the motion is modeled as a particle with charge ##q## moving in a uniform magnetic field ##\mathbf{B}=B~\mathbf{\hat z}##. In addition to the Lorentz force, air resistance provides retarding force ##\mathbf{F}_{\text{ret.}}=-b\mathbf{v}.##

First we prove that this model predicts a constant angle between acceleration and velocity and find an expression for the angle ##\varphi## between acceleration and velocity. We assume that the particle moves in the ##xy##-plane. From Newton's second law we have $$\begin{align}\mathbf{a}=\frac{1}{m}(q\mathbf{v}\times\mathbf{B}-b\mathbf{v}).\end{align}$$Then, noting that ##\mathbf{v}\cdot(\mathbf{v}\times\mathbf{B})=0##, $$\mathbf{v}\cdot\mathbf{a}=\frac{1}{m}\mathbf{v}\cdot[q(\mathbf{v}\times\mathbf{B})-b\mathbf{v}]=-\frac{bv^2}{m}$$Also, $$\begin{align} \mathbf{a}\cdot\mathbf{a} =a^2 & =\frac{1}{m}(q\mathbf{v}\times\mathbf{B}-b\mathbf{v})\cdot \frac{1}{m}(q\mathbf{v}\times\mathbf{B}-b\mathbf{v})\nonumber \\ & =\frac{1}{m^2}({q^2B^2v^2+b^2v^2})\implies a=\frac{1}{m}(q^2 B^2 v^2+b^2 v^2)^{1/2}.\nonumber \end{align}$$The cosine of the angle between acceleration and velocity is constant and given by $$\begin{align} \cos\!\varphi=\frac{\mathbf{v}\cdot\mathbf{a}}{va}=-\frac{b}{(q^2B^2+b^2)^{1/2}}\end{align}.$$ We now write Newton's second law in two dimensions to find the trajectory. To simplify the form of the equations we use the cyclotron frequency ##\omega_c=qB/m## and auxiliary variable ##\beta=b/m##. Then from equation (1) the components of the acceleration are
$$\begin{align} & \dot v_x =\omega_c v_y-\beta v_x \\ & \dot v_y=-\omega_c v_x-\beta v_y. \end{align}$$The two coupled equations can be solved quite easily by changing variables, $$\xi=v_x+iv_y~;~~\eta = v_x-iv_y$$ in which case equations (3) and (4) become $$
\begin{align} & \dot{\xi}+\dot{\eta}=-i\omega_c(\xi-\eta)-\beta(\xi+\eta) \nonumber \\&\dot{\xi}-\dot{\eta}=-i\omega_c(\xi+\eta)-\beta(\xi-\eta). \nonumber \end{align}$$ Adding the equations yields $$\begin{align} &\dot {\xi} =-(i\omega_c+\beta)\xi\implies \xi=Ae^{-\beta t}e^{-i\omega_c t} \nonumber \\ & \dot{\eta}=\dot {\xi}^*= A^*e^{-\beta t}e^{i\omega_c t} .\nonumber \end{align}$$We can now employ the definitions for ##\xi## and ##\eta## and use the initial conditions ##v_x(0)=v_0## and ##v_y(0)=0## to find $$\begin{align} & v_x(t)=v_0e^{-\beta t}\cos(\omega_c t) \nonumber \\ & v_y(t) = v_0e^{-\beta t}\sin(\omega_c t). \nonumber \end{align}$$Finally, we integrate to find ##x(t)## and ##y(t)## such that ##v_x(0)=v_0## and ##v_y(0)=0##: $$\begin{align} & x(t)=\frac{v_0e^{-\beta t}}{\beta^2+\omega_c^2}[\omega_c\sin(\omega_c t)-\beta \cos(\omega_c t)]\nonumber \\ & y(t)=\frac{v_0e^{-\beta t}}{\beta^2+\omega_c^2}[\omega_c\cos(\omega_c t)+\beta \sin(\omega_c t)]\nonumber \end{align}$$ The graph below is a parametric plot of the trajectory with parameters as shown.

Trajectory.png
 
Last edited:
  • Like
  • Love
  • Wow
Likes   Reactions: AmanWithoutAscarf, berkeman, DrClaude and 6 others
Physics news on Phys.org
It's going to take some dissecting to see how far off I was. Thanks for sharing!
 
  • Like
Likes   Reactions: member 731016 and kuruman
kuruman said:
Homework Statement:: Find the trajectory of a particle the acceleration of which is fixed at angle ##\varphi > \pi/2## relative to the velocity.
Relevant Equations:: Newton's second law.

This is a solution to a problem inspired by another thread. It is posted here to separate it from the multiple choice question which was the subject of that thread. A parametric solution for the trajectory can be found quite easily if the motion is modeled as a particle with charge ##q## moving in a uniform magnetic field ##\mathbf{B}=B~\mathbf{\hat z}##. In addition to the Lorentz force, air resistance provides retarding force ##\mathbf{F}_{\text{ret.}}=-b\mathbf{v}.##

First we prove that this model predicts a constant angle between acceleration and velocity and find an expression for the angle ##\varphi## between acceleration and velocity. We assume that the particle moves in the ##xy##-plane. From Newton's second law we have $$\begin{align}\mathbf{a}=\frac{1}{m}(q\mathbf{v}\times\mathbf{B}-b\mathbf{v}).\end{align}$$Then, noting that ##\mathbf{v}\cdot(\mathbf{v}\times\mathbf{B})=0##, $$\mathbf{v}\cdot\mathbf{a}=\frac{1}{m}\mathbf{v}\cdot[q(\mathbf{v}\times\mathbf{B})-b\mathbf{v}]=-\frac{bv^2}{m}$$Also, $$\begin{align} \mathbf{a}\cdot\mathbf{a} =a^2 & =\frac{1}{m}(q\mathbf{v}\times\mathbf{B}-b\mathbf{v})\cdot \frac{1}{m}(q\mathbf{v}\times\mathbf{B}-b\mathbf{v})\nonumber \\ & =\frac{1}{m^2}({q^2B^2v^2+b^2v^2})\implies a=\frac{1}{m}(q^2 B^2 v^2+b^2 v^2)^{1/2}.\nonumber \end{align}$$The cosine of the angle between acceleration and velocity is constant and given by $$\begin{align} \cos\!\varphi=\frac{\mathbf{v}\cdot\mathbf{a}}{va}=-\frac{b}{(q^2B^2+b^2)^{1/2}}\end{align}.$$ We now write Newton's second law in two dimensions to find the trajectory. To simplify the form of the equations we use the cyclotron frequency ##\omega_c=qB/m## and auxiliary variable ##\beta=b/m##. Then from equation (1) the components of the acceleration are
$$\begin{align} & \dot v_x =\omega_c v_y-\beta v_x \\ & \dot v_y=-\omega_c v_x-\beta v_y. \end{align}$$The two coupled equations can be solved quite easily by changing variables, $$\xi=v_x+iv_y~;~~\eta = v_x-iv_y$$ in which case equations (2) and (3) become $$
\begin{align} & \dot{\xi}+\dot{\eta}=-i\omega_c(\xi-\eta)-\beta(\xi+\eta) \nonumber \\&\dot{\xi}-\dot{\eta}=-i\omega_c(\xi+\eta)-\beta(\xi-\eta). \nonumber \end{align}$$ Adding the equations yields $$\begin{align} &\dot {\xi} =-(i\omega_c+\beta)\xi\implies \xi=Ae^{-\beta t}e^{-i\omega_c t} \nonumber \\ & \dot{\eta}=\dot {\xi}^*= A^*e^{-\beta t}e^{i\omega_c t} .\nonumber \end{align}$$We can now employ the definitions for ##\xi## and ##\eta## and use the initial conditions ##v_x(0)=v_0## and ##v_y(0)=0## to find $$\begin{align} & v_x(t)=v_0e^{-\beta t}\cos(\omega_c t) \nonumber \\ & v_y(t) = v_0e^{-\beta t}\sin(\omega_c t). \nonumber \end{align}$$Finally, we integrate to find ##x(t)## and ##y(t)## such that ##v_x(0)=v_0## and ##v_y(0)=0##: $$\begin{align} & x(t)=\frac{v_0e^{-\beta t}}{\beta^2+\omega_c^2}[\omega_c\sin(\omega_c t)-\beta \cos(\omega_c t)]\nonumber \\ & y(t)=\frac{v_0e^{-\beta t}}{\beta^2+\omega_c^2}[\omega_c\cos(\omega_c t)+\beta \sin(\omega_c t)]\nonumber \end{align}$$ The graph below is a parametric plot of the trajectory with parameters as shown.

View attachment 321236
Very nice!
 
  • Like
Likes   Reactions: kuruman
This is a fun problem. I usually have this setup in my "simulation of motion" module (it is one problem which the students can choose to study) and I present the "algebraic" solution as a bonus when the module is finished.
 
  • Like
Likes   Reactions: PeroK

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K