A Finding a suitable form factor for a given set of conditions

codebpr
Messages
6
Reaction score
0
TL;DR Summary
I want to plot Hawking temperature as a function of z(inverse of horizon radius), which requires making use of a form factor A(z). I want to make an ansatz for form factor such that I get the desired plots.
This is basically a physics problem but I will try my best to highlight the mathematics behind it.
Suppose I have two functions:

$$T(z,B)=\frac{\text{z}^3 e^{-3 A(\text{z})-B^2 \text{z}^2}}{4 \pi \int_0^{\text{z}} \xi ^3 e^{-3 A(\xi )-B^2 \xi ^2} \, d\xi },$$
$$\phi(z,B)=\int_0^z \sqrt{-\frac{2 \left(3 x A''(x)-3 x A'(x)^2+6 A'(x)+2 B^4 x^3+2 B^2 x\right)}{x}} \, dx$$ where z \in \mathbb{R^+} and B \in [0,1]

and I want to find a function A(z), which is known as the form factor in literature, such that the plot of the function T(z,B) v/s z has one local minimum along with the condition that T(z,B)\rightarrow\infty when z\rightarrow0, also \phi(z) is real-valued. When I take the ansatz A(z)=-a z^2, I am able to satisfy the above condition for B\in[0,0.6] and get plots like:
now.jpg


Now for a different model, I need to use such an ansatz for A(z) such that I may be able to satisfy the real valued-ness of \phi(z) and get a local minimum as well as a maximum for the plot of T(z,B) v/s z with the condition that T(z,B)\rightarrow\infty when z\rightarrow0 and T(z,B)\rightarrow0 when z\rightarrow\infty to get plots like these:
wanted.jpg


If possible I want to keep B\in[0,1]. The constant a has to be used in the form factor somehow, whose value is 0.15. The form factor can also be written in terms of A(z,B). Is there a way to use Mathematical analysis to come up with such a form factor? Any help in this regard would be truly beneficial!
 
Last edited:
Physics news on Phys.org
The way you formulated the problem better fits to a mathematical subforum.
 
https://arxiv.org/pdf/2503.09804 From the abstract: ... Our derivation uses both EE and the Newtonian approximation of EE in Part I, to describe semi-classically in Part II the advection of DM, created at the level of the universe, into galaxies and clusters thereof. This advection happens proportional with their own classically generated gravitational field g, due to self-interaction of the gravitational field. It is based on the universal formula ρD =λgg′2 for the densityρ D of DM...
Many of us have heard of "twistors", arguably Roger Penrose's biggest contribution to theoretical physics. Twistor space is a space which maps nonlocally onto physical space-time; in particular, lightlike structures in space-time, like null lines and light cones, become much more "local" in twistor space. For various reasons, Penrose thought that twistor space was possibly a more fundamental arena for theoretical physics than space-time, and for many years he and a hardy band of mostly...
Back
Top