A Finding a suitable form factor for a given set of conditions

codebpr
Messages
6
Reaction score
0
TL;DR Summary
I want to plot Hawking temperature as a function of z(inverse of horizon radius), which requires making use of a form factor A(z). I want to make an ansatz for form factor such that I get the desired plots.
This is basically a physics problem but I will try my best to highlight the mathematics behind it.
Suppose I have two functions:

$$T(z,B)=\frac{\text{z}^3 e^{-3 A(\text{z})-B^2 \text{z}^2}}{4 \pi \int_0^{\text{z}} \xi ^3 e^{-3 A(\xi )-B^2 \xi ^2} \, d\xi },$$
$$\phi(z,B)=\int_0^z \sqrt{-\frac{2 \left(3 x A''(x)-3 x A'(x)^2+6 A'(x)+2 B^4 x^3+2 B^2 x\right)}{x}} \, dx$$ where z \in \mathbb{R^+} and B \in [0,1]

and I want to find a function A(z), which is known as the form factor in literature, such that the plot of the function T(z,B) v/s z has one local minimum along with the condition that T(z,B)\rightarrow\infty when z\rightarrow0, also \phi(z) is real-valued. When I take the ansatz A(z)=-a z^2, I am able to satisfy the above condition for B\in[0,0.6] and get plots like:
now.jpg


Now for a different model, I need to use such an ansatz for A(z) such that I may be able to satisfy the real valued-ness of \phi(z) and get a local minimum as well as a maximum for the plot of T(z,B) v/s z with the condition that T(z,B)\rightarrow\infty when z\rightarrow0 and T(z,B)\rightarrow0 when z\rightarrow\infty to get plots like these:
wanted.jpg


If possible I want to keep B\in[0,1]. The constant a has to be used in the form factor somehow, whose value is 0.15. The form factor can also be written in terms of A(z,B). Is there a way to use Mathematical analysis to come up with such a form factor? Any help in this regard would be truly beneficial!
 
Last edited:
Physics news on Phys.org
The way you formulated the problem better fits to a mathematical subforum.
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top