B Finding all possible sums given 2 lists, matched one to one

  • B
  • Thread starter Thread starter mishima
  • Start date Start date
  • Tags Tags
    Sums
mishima
Messages
576
Reaction score
43
Hi, its been a while since I have thought about this type of math, and I can't really remember how to do this or what its even called. I have two lists of numbers:

A: 8, 8, 9, 10, 7, 8
B: 6, 5, 4, 3, 3, 3

I want to find all the different ways I can add elements from A with elements of B. For instance, just adding them vertically as they are here I could get one combination as:

C: 14, 13, 13, 13, 10, 11

When an element from a list is used, its gone. For example, if I added 10 from A and 6 from B, I can't use 6 again (or vice versa). Can anyone nudge me in the right direction?
 
Mathematics news on Phys.org
The number of ways you can pick an entry in the A list to be added to an entry in the B list is the number of permutations, which is n! This number will be reduced by the fact that many of the sums are the same, which feels like a hard problem to handle.
 
Ok, so 720 possibilities. I could've sworn there was a way to account for repeats but like I said it has been a while since I have touched on this style of thinking. Ultimately I am just trying to make a spreadsheet to crunch it all out.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
24
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
8
Views
2K
Replies
2
Views
2K
Back
Top