B Finding all possible sums given 2 lists, matched one to one

  • Thread starter Thread starter mishima
  • Start date Start date
  • Tags Tags
    Sums
Click For Summary
To find all possible sums from two lists of numbers, A and B, where each element can only be used once, one must consider the permutations of the lists. The total number of permutations is calculated as n!, but this number is reduced due to repeated elements in the lists. The challenge lies in accounting for these duplicates to avoid counting the same sum multiple times. The user seeks guidance on efficiently calculating these sums, potentially using a spreadsheet for analysis. Ultimately, the goal is to explore all unique combinations of sums derived from the two lists.
mishima
Messages
576
Reaction score
43
Hi, its been a while since I have thought about this type of math, and I can't really remember how to do this or what its even called. I have two lists of numbers:

A: 8, 8, 9, 10, 7, 8
B: 6, 5, 4, 3, 3, 3

I want to find all the different ways I can add elements from A with elements of B. For instance, just adding them vertically as they are here I could get one combination as:

C: 14, 13, 13, 13, 10, 11

When an element from a list is used, its gone. For example, if I added 10 from A and 6 from B, I can't use 6 again (or vice versa). Can anyone nudge me in the right direction?
 
Mathematics news on Phys.org
The number of ways you can pick an entry in the A list to be added to an entry in the B list is the number of permutations, which is n! This number will be reduced by the fact that many of the sums are the same, which feels like a hard problem to handle.
 
Ok, so 720 possibilities. I could've sworn there was a way to account for repeats but like I said it has been a while since I have touched on this style of thinking. Ultimately I am just trying to make a spreadsheet to crunch it all out.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 68 ·
3
Replies
68
Views
11K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K