Finding $\angle APB$ in $PQR$ Triangle with $QA:AB:BR = 3:5:4$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary
SUMMARY

The discussion focuses on finding the angle $\angle APB$ in triangle $PQR$, where $\angle P=90^{\circ}$ and $PQ=PR$. Given the segment ratios $QA:AB:BR=3:5:4$, the calculations reveal that if $QA=3$, $AB=5$, and $BQ=4$, the sides of triangle $PQR$ measure $6\sqrt{2}$ units. Using the cosine rule, it is determined that $\angle APB = 45^\circ$.

PREREQUISITES
  • Understanding of triangle properties, specifically right triangles.
  • Familiarity with the cosine rule in trigonometry.
  • Knowledge of segment ratios and their implications in geometric constructions.
  • Ability to perform calculations involving square roots and trigonometric functions.
NEXT STEPS
  • Study the cosine rule in-depth, particularly its applications in various triangle types.
  • Explore geometric properties of right triangles, focusing on isosceles right triangles.
  • Investigate segment division ratios and their effects on triangle geometry.
  • Practice solving similar problems involving angle calculations in triangles with given segment ratios.
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying trigonometry or preparing for competitive exams will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $PQR$ be a triangle with $\angle P=90^{\circ}$ and $PQ=PR$. Let $A$ and $B$ be points on the segment $QR$ such that $QA:AB:BR=3:5:4$. Find $\angle APB$.
 
Mathematics news on Phys.org
anemone said:
Let $PQR$ be a triangle with $\angle P=90^{\circ}$ and $PQ=PR$. Let $A$ and $B$ be points on the segment $QR$ such that $QA:AB:BR=3:5:4$. Find $\angle APB$.
[sp]
If $QA=3$, $AB=5$ and $BQ=4$ then the other two sides of the triangle $PQR$ will both be $6\sqrt2$ units.Cosine rule in triangle $PQA$: $AP^2 = 9 + 72 - 2\cdot 3\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 45$.

Cosine rule in triangle $PRB$: $BP^2 = 16 + 72 - 2\cdot 4\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 40$.

Cosine rule in triangle $APB$: $\cos\alpha = \dfrac{40 + 45 - 25}{2\cdot\sqrt{40}\cdot\sqrt{45}} = \dfrac1{\sqrt2}$.

Therefore $\alpha = 45^\circ$.[/sp]
 

Attachments

  • cosine.png
    cosine.png
    2.3 KB · Views: 115
Opalg said:
[sp]
If $QA=3$, $AB=5$ and $BQ=4$ then the other two sides of the triangle $PQR$ will both be $6\sqrt2$ units.Cosine rule in triangle $PQA$: $AP^2 = 9 + 72 - 2\cdot 3\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 45$.

Cosine rule in triangle $PRB$: $BP^2 = 16 + 72 - 2\cdot 4\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 40$.

Cosine rule in triangle $APB$: $\cos\alpha = \dfrac{40 + 45 - 25}{2\cdot\sqrt{40}\cdot\sqrt{45}} = \dfrac1{\sqrt2}$.

Therefore $\alpha = 45^\circ$.[/sp]
Well done Opalg (Yes) and thanks for participating!

Here is another approach that tackles the problem using the geometry route that I want to share with you:
View attachment 3122

Here is another approach that tackles the problem using the geometry route that I want to share with you:

If we rotate the triangle $PQR$ about $P$ by $90^{\circ}$, the point $Q$ goes to $R$.

Let $A'$ represent the image of point $A$ under this rotation. Then we have

$RA'=QA$ and $\angle PRA'=\angle PQR=45^{\circ}$ so $BRA'$ is a right-angled triangle with $RB:RA'=4:3$, $\therefore A'B=BA$.

It follows that $PABA"$ is a kite with $PA'=PA$ and $AB=BA'$. Therefore $PB$ is the angle bisector of $\angle APA'$. This implies $\angle APB=\dfrac{\angle APA'}{2}=45^{\circ}$.
 

Attachments

  • Find angle APB.JPG
    Find angle APB.JPG
    12.7 KB · Views: 130
anemone said:
Let $PQR$ be a triangle with $\angle P=90^{\circ}$ and $PQ=PR$. Let $A$ and $B$ be points on the segment $QR$ such that $QA:AB:BR=3:5:4$. Find $\angle APB$.
let point Q be the origin so we may construct the following :
Q(0,0),A(3,0),B(8,0),R(12,0) and P(6,6)
slope of PA=2
slope of PB=-3
and we have :tan ($\angle $ APB)=1
that is $\angle $APB=$45^o$
 
Last edited:
Albert said:
let point Q be the origin so we may construct the following :
Q(0,0),A(3,0),B(8,0),R(12,0) and P(6,6)
slop of PA=2
slop of PB=-3
and we have :tan ($\angle $ APB)=1
that is $\angle $APB=$45^o$

Good job, Albert! And thanks for participating!:)
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
84K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K