MHB Finding $b(a+c)$ for Real Roots of $\sqrt{2014}x^3-4029x^2+2=0$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a>b>c$ be the real roots of the equation $\sqrt{2014}x^3-4029x^2+2=0$. Find $b(a+c)$.
 
Mathematics news on Phys.org
To avoid radicals let $\sqrt{2014}=p$
So we get $px^3-(2p^2+1)x^2 +2 = 0$
Or factoring we get $(px-1)(x^2-2px-2)$ = 0
So one root is $x= \frac{1}{p}$ and other two roots are roots of $x^2-2px-2=0$
For the equation $x^2-2px-2=0$ sum of the roots is 2p and product is -2. so one root has to be -ve and
the postiive root shall be above 2p
So $b=\frac{1}{p}\cdots(1)$
And c is the -ve root and $a> 2p$
a,c are roots of $x^2-2px-2=0$ so $a+c = 2p\cdots(2)$
Hence $b(a+c) = 2$ using (1) and (2)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K