MHB Finding Continuous Values of $\frac{e^{sinx}}{4 - \sqrt{x^2 - 9}}$

Click For Summary
The function $\frac{e^{\sin x}}{4 - \sqrt{x^2 - 9}}$ is continuous where the denominator does not equal zero and the expression under the square root is non-negative. The conditions for continuity lead to the inequalities $x^2 - 9 \geq 0$, resulting in $x \in (-\infty, -3] \cup [3, \infty)$, and $4 - \sqrt{x^2 - 9} \neq 0$, which gives $|x| \neq 5$. Thus, the function is continuous for $x \in (-\infty, -5) \cup (-5, -3] \cup [3, 5) \cup (5, \infty)$. The initial reasoning was incorrect due to miscalculating the conditions and not considering the non-negativity of the radicand. The correct intervals for continuity have been established.
tmt1
Messages
230
Reaction score
0
I have this function

$$\frac{e^{sinx}}{4 - \sqrt{x^2 - 9}}$$

And I need to find all the values for which this function is continuous.

So I do

$$4 - \sqrt{x^2 - 9} \ne 0$$

$$ \sqrt{x^2 - 9} \ne 4 $$

$$ x^2 - 9 \ne 16 $$

$$ x^2 \ne 7 $$

And therefore, the function is not valid where

$$ x \ne +/- \sqrt{7} $$

However, this appears to be completely wrong. Why is my reasoning wrong?
 
Mathematics news on Phys.org
First, I would look at:

$$x^2-9\ge0$$

This gives us:

$$(-\infty,-3]\,\cup\,[3,\infty)$$

Next, look at

$$\sqrt{x^2-9}\ne4$$

$$x^2\ne25$$

$$|x|\ne5$$

$$(-\infty,-5)\,\cup\,(-5,5)\,\cup\,(5,\infty)$$

And so, we find:

$$(-\infty,-5)\,\cup\,(-5,-3]\,\cup\,[3,5)\,\cup\,(5,\infty)$$
 
MarkFL said:
First, I would look at:

$$x^2-9\ge0$$

This gives us:

$$(-\infty,-3]\,\cup\,[3,\infty)$$

Next, look at

$$\sqrt{x^2-9}\ne4$$

$$x^2\ne25$$

$$|x|\ne5$$

$$(-\infty,-5)\,\cup\,(-5,5)\,\cup\,(5,\infty)$$

And so, we find:

$$(-\infty,-5)\,\cup\,(-5,-3]\,\cup\,[3,5)\,\cup\,(5,\infty)$$

So what I had was correct but not comprehensive?
 
tmt said:
So what I had was correct but not comprehensive?

No, you took:

$$x^2-9\ne16$$

And added 9 to the left side while subtracting 9 from the right side. You also did not require the radicand to be non-negative. :)
 
tmt said:
I have this function

$$\frac{e^{sinx}}{4 - \sqrt{x^2 - 9}}$$

And I need to find all the values for which this function is continuous.

So I do

$$4 - \sqrt{x^2 - 9} \ne 0$$

$$ \sqrt{x^2 - 9} \ne 4 $$

$$ x^2 - 9 \ne 16 $$

$$ x^2 \ne 7 $$
No, if $x^2- 9\ne 16$ then $x^2= x^2- 9+ 9= 16+ 9= 25$, not 16- 9= 7.

And therefore, the function is not valid where

$$ x \ne +/- \sqrt{7} $$

However, this appears to be completely wrong. Why is my reasoning wrong?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K