MHB Finding $\dfrac{AC}{BD}$ of a Trapezoid $ABCD$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trapezoid
Click For Summary
In trapezoid $ABCD$ with $BC \parallel AD$, $\angle A = 90^\circ$, and $AC \perp BD$, the ratio $\frac{BC}{AD}$ is given as $k$. The goal is to determine the ratio $\frac{AC}{BD}$. The discussion emphasizes the geometric relationships and properties of trapezoids to derive the required ratio. The solution involves applying the properties of right triangles formed by the diagonals and the parallel sides. Ultimately, the relationship between the segments can be expressed in terms of $k$.
Albert1
Messages
1,221
Reaction score
0
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$
 
Mathematics news on Phys.org
Albert said:
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$

Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
 
mente oscura said:
Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
very good :)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K