MHB Finding $\dfrac{AC}{BD}$ of a Trapezoid $ABCD$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trapezoid
Click For Summary
In trapezoid $ABCD$ with $BC \parallel AD$, $\angle A = 90^\circ$, and $AC \perp BD$, the ratio $\frac{BC}{AD}$ is given as $k$. The goal is to determine the ratio $\frac{AC}{BD}$. The discussion emphasizes the geometric relationships and properties of trapezoids to derive the required ratio. The solution involves applying the properties of right triangles formed by the diagonals and the parallel sides. Ultimately, the relationship between the segments can be expressed in terms of $k$.
Albert1
Messages
1,221
Reaction score
0
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$
 
Mathematics news on Phys.org
Albert said:
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$

Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
 
mente oscura said:
Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
very good :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K