Finding $\dfrac{AC}{BD}$ of a Trapezoid $ABCD$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trapezoid
Click For Summary
SUMMARY

The discussion focuses on calculating the ratio $\dfrac{AC}{BD}$ in trapezoid $ABCD$, where $BC$ is parallel to $AD$, $\angle A$ is $90^\circ$, and $AC$ is perpendicular to $BD$. Given the ratio $\dfrac{BC}{AD} = k$, the objective is to derive the expression for $\dfrac{AC}{BD}$. The geometric properties of trapezoids and the relationships between the sides are crucial for this calculation.

PREREQUISITES
  • Understanding of trapezoid properties, specifically parallel sides and angles.
  • Knowledge of geometric relationships involving perpendicular lines.
  • Familiarity with ratios and proportions in geometry.
  • Basic skills in algebra for manipulating geometric expressions.
NEXT STEPS
  • Explore the derivation of geometric ratios in trapezoids.
  • Study the properties of perpendicular lines in geometric figures.
  • Learn about the implications of parallel lines on angle measures and side ratios.
  • Investigate advanced trapezoid problems involving similar triangles.
USEFUL FOR

Mathematicians, geometry students, and educators looking to deepen their understanding of trapezoid properties and geometric ratios.

Albert1
Messages
1,221
Reaction score
0
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$
 
Mathematics news on Phys.org
Albert said:
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$

Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
 
mente oscura said:
Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
very good :)
 

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K