MHB Finding Distinct and Singular Normals for a Parabola

  • Thread starter Thread starter Theia
  • Start date Start date
  • Tags Tags
    Parabola
Theia
Messages
121
Reaction score
1
Let $$y = 2x^2 + 4x + \tfrac{7}{4}$$ and line $$p$$ a normal which go through the point $$(X, Y)$$. Find the regions in $$xy$$-plane where there are either 3 distinct normals or only 1 normal.
 
Mathematics news on Phys.org
Theia said:
Let $$y = 2x^2 + 4x + \tfrac{7}{4}$$ and line $$p$$ a normal which go through the point $$(X, Y)$$. Find the regions in $$xy$$-plane where there are either 3 distinct normals or only 1 normal.

Hey Theia! Nice puzzle! ;)

Let's pick a point $(x,y)$ on the parabola.
Then the vector $\mathbf d$ from $(X,Y)$ to $(x,y)$ is given by:
\[\mathbf d = \binom xy - \binom XY = \binom {x-X}{2x^2+4x+7/4-Y}\]
A tangential vector $\mathbf t$ at $(x,y)$ is the derivative:
\[\mathbf t = \d{}x \binom x{2x^2+4x+7/4}= \binom 1 {4x+4}\]
The corresponding line $p$ along $\mathbf d$ is normal if the dot product is zero:
\[\mathbf d \cdot \mathbf t = (x-X)+(2x^2+4x+7/4-Y)(4x+4) = 8x^3+24x^2+(24-4Y)x+(7-4Y-X) = 0\]
This is a cubic function, and according to wiki, the critical distinction is when its discriminant $\Delta=0$, that is:
\begin{array}{}\Delta &=& 18abcd - 4b^3d + b^2c^2 - 4ac^3 - 27a^2d^2 \\
&= &18\cdot 8\cdot 24(24-4Y)(7-4Y-X)-4\cdot 24^3(7-4Y-X)+24^2(24-4Y)^2 \\
&& - 4\cdot 8 (24-4Y)^3-27\cdot 8^2(7-4Y-X)^2 \\
&=& -64(27X^2+54X-32Y^3+27) \\
&=& 0\end{array}

If we plot this with Wolfram, we get:
View attachment 5933

In other words, we have 3 distinct normals if we are above that curve.
And we have 1 distinct normal if we are below that curve.

Oh, and the intersection points are at $\left(-1\pm\frac 1{\sqrt 2}, \frac 34\right)$, and the inverting point is at $(-1,0)$.
 

Attachments

  • Parabola_normals.png
    Parabola_normals.png
    4.6 KB · Views: 106
Very well done! ^^
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top