flyusx
- 63
- 9
- Homework Statement
- A particle is moving in the potential well $$V(x)=\begin{cases}0&-a\leq x\leq-b\\V_{0}&-b\leq x\leq b\\0&b\leq x\leq a\\+\infty&\text{elsewhere}\end{cases}$$ where ##V_{0}## is positive. In this problem, consider ##E<V_{0}##. Let ##\psi_{1}(x)## and ##\psi_{2}(x)## represent the two lowest energy solutions of the Schrodinger equation; call their energies ##E_{1}## and ##E_{2}## respectively.
(a) Calculate ##E_{1}## and ##E_{2}## in eV for the case where ##mc^{2}=1## GeV, ##a=10^{-14}## m and ##b=0.4*10^{-14}## m.
(b) A particular solution of the Schrodinger equation can be constructed by superposing ##\psi_{1}(x)\exp\left(\frac{iE_{1}t}{\hbar}\right)## and ##\psi_{2}(x)\exp\left(\frac{iE_{2}t}{\hbar}\right)##. Construct a wave packet ##\psi## which at ##t=0## is (almost) entirely to the left-hand side of the well and describe its motion in time; find the period of oscillations between the two terms of ##\psi##.
- Relevant Equations
- ##-\frac{\hbar^{2}}{2m}\frac{\text{d}^{2}\psi}{\text{d}x^{2}}+V\psi(x)=E\psi(x)##
I have been stuck on part (a) for a few days and would appreciate a nudge in the right direction. This is Zettili Exercise 4.4.
I know this is a symmetric potential so that the (non-degenerate) bound states will have definite parity. I have tried to take advantage of this symmetry by focusing on wave functions for ##x\geq0## so that the potential of interest is $$V(x)=\begin{cases}V_{0}&0\leq x\leq b\\0&b\leq x\leq a\\+\infty&x>a\end{cases}$$ and I denote ##\psi_{1}(x)## to be the wave function before ##x=b## and ##\psi_{2}(x)## to be the wave function between ##x=b## and ##x=a##.
I first write the Schrodinger equations $$\frac{\text{d}^{2}\psi_{1}}{\text{d}x^{2}}-k_{1}^{2}\psi_{1}(x)=0$$$$\frac{\text{d}^{2}\psi_{2}}{\text{d}x^{2}}+k_{2}^{2}\psi_{2}(x)=0$$ where $$k_{1}=\frac{2m(V_{0}-E)}{\hbar}$$$$k_{2}=\frac{2mE}{\hbar}$$
I found general solution to be $$\psi(x)=\begin{cases}\psi_{1}(x)=A\exp(k_{1}x)+B\exp(-k_{1}x)\\\psi_{2}(x)=C\exp(ik_{2}x)+D\exp(-ik_{2}x)\end{cases}$$
I now impose parity on the wave functions. For the even states ##\psi_{+}(x)##, I found $$\psi_{1+}(x)=\psi_{1+}(-x)\rightarrow A\exp(k_{1}x)+B\exp(-k_{1}x)=A\exp(-k_{1}x)+B\exp(-k_{2}x)\rightarrow A=B$$$$\psi_{2+}(x)=\psi_{2+}(-x)\rightarrow C\exp(ik_{2}x)+D\exp(-ik_{2}x)=C\exp(-ik_{2}x)+D\exp(ik_{2}x)\rightarrow C=D$$ I use a few trigonometric-exponential identities and I'll redefine the constants used to be ##A## and ##B## such that the even wave function is $$\psi_{+}(x)=\begin{cases}\psi_{1+}(x)=A\cosh(k_{1}x)\\\psi_{2+}(x)=B\cos(k_{2}x)\end{cases}$$
I did the same for the odd states so that $$\psi_{1-}(x)=-\psi_{1-}(-x)\rightarrow A\exp(k_{1}x)+B\exp(-k_{1}x)=-A\exp(-k_{1}x)-B\exp(k_{1}x)\rightarrow A=-B$$$$\psi_{2-}(x)=-\psi_{2-}(-x)\rightarrow C\exp(ik_{2}x)+ D\exp(-ik_{2}x)=-C\exp(-ik_{2}x)-D\exp(ik_{2}x)\rightarrow C=-D$$ I'll redefine the constants to be ##C## and ##D## so that the odd wave function is $$\psi_{-}(x)=\begin{cases}\psi_{1-}(x)=C\sinh(k_{1}x)\\\psi_{2-}(x)=D\sin(k_{2}x)\end{cases}$$
Here is where I have trouble. When I write down the boundary conditions for the states (I'll take the even state here) $$\psi_{1+}(x)=\psi_{2+}(x)\rightarrow A\cosh(k_{1}b)=B\cosh(k_{2}b)$$$$\left.\frac{\text{d}\psi_{1+}}{\text{d}x}\right\vert_{x=b}=\left.\frac{\text{d}\psi_{2+}}{\text{d}x}\right\vert_{x=b}\rightarrow k_{1}A\sinh(k_{1}b)=-k_{2}B\sin(k_{2}b)$$$$\psi_{2+}(a)=B\cos(k_{2}a)=0$$
Now I see two ways to find the lowest even state energy. I can take the third relation and say $$\cos(k_{2}a)=0\rightarrow\frac{\sqrt{2mE}}{\hbar}a=\frac{\pi}{2}$$
and plugging in values gives ##E\approx480.4## keV. On the other hand, I can take divide the second equation by the first and get $$k_{1}\tanh(k_{1}b)=-k_{2}\tan(k_{2}b)$$ which by doing a change of variables ##\gamma=k_{1}b## and ##y=k_{2}b## gives $$\frac{\gamma}{b}\tanh(\gamma)=-\frac{y}{b}\tan(y)$$ or $$\gamma\tanh(\gamma)=-y\tan(y)$$ When I plot the functions ##x\tanh(x)## and ##-x\tan(x)##, I get an intersection point in the first quadrant at ##\left(2.36502,\ 2.32364\right)##. Now I take $$y=2.36502=\frac{\sqrt{2mE}}{\hbar}b$$ and I get ##E\approx6.8## MeV.
So I get two energies that are widely in contrast with each other. I'm not sure what I'm doing wrong.
I know this is a symmetric potential so that the (non-degenerate) bound states will have definite parity. I have tried to take advantage of this symmetry by focusing on wave functions for ##x\geq0## so that the potential of interest is $$V(x)=\begin{cases}V_{0}&0\leq x\leq b\\0&b\leq x\leq a\\+\infty&x>a\end{cases}$$ and I denote ##\psi_{1}(x)## to be the wave function before ##x=b## and ##\psi_{2}(x)## to be the wave function between ##x=b## and ##x=a##.
I first write the Schrodinger equations $$\frac{\text{d}^{2}\psi_{1}}{\text{d}x^{2}}-k_{1}^{2}\psi_{1}(x)=0$$$$\frac{\text{d}^{2}\psi_{2}}{\text{d}x^{2}}+k_{2}^{2}\psi_{2}(x)=0$$ where $$k_{1}=\frac{2m(V_{0}-E)}{\hbar}$$$$k_{2}=\frac{2mE}{\hbar}$$
I found general solution to be $$\psi(x)=\begin{cases}\psi_{1}(x)=A\exp(k_{1}x)+B\exp(-k_{1}x)\\\psi_{2}(x)=C\exp(ik_{2}x)+D\exp(-ik_{2}x)\end{cases}$$
I now impose parity on the wave functions. For the even states ##\psi_{+}(x)##, I found $$\psi_{1+}(x)=\psi_{1+}(-x)\rightarrow A\exp(k_{1}x)+B\exp(-k_{1}x)=A\exp(-k_{1}x)+B\exp(-k_{2}x)\rightarrow A=B$$$$\psi_{2+}(x)=\psi_{2+}(-x)\rightarrow C\exp(ik_{2}x)+D\exp(-ik_{2}x)=C\exp(-ik_{2}x)+D\exp(ik_{2}x)\rightarrow C=D$$ I use a few trigonometric-exponential identities and I'll redefine the constants used to be ##A## and ##B## such that the even wave function is $$\psi_{+}(x)=\begin{cases}\psi_{1+}(x)=A\cosh(k_{1}x)\\\psi_{2+}(x)=B\cos(k_{2}x)\end{cases}$$
I did the same for the odd states so that $$\psi_{1-}(x)=-\psi_{1-}(-x)\rightarrow A\exp(k_{1}x)+B\exp(-k_{1}x)=-A\exp(-k_{1}x)-B\exp(k_{1}x)\rightarrow A=-B$$$$\psi_{2-}(x)=-\psi_{2-}(-x)\rightarrow C\exp(ik_{2}x)+ D\exp(-ik_{2}x)=-C\exp(-ik_{2}x)-D\exp(ik_{2}x)\rightarrow C=-D$$ I'll redefine the constants to be ##C## and ##D## so that the odd wave function is $$\psi_{-}(x)=\begin{cases}\psi_{1-}(x)=C\sinh(k_{1}x)\\\psi_{2-}(x)=D\sin(k_{2}x)\end{cases}$$
Here is where I have trouble. When I write down the boundary conditions for the states (I'll take the even state here) $$\psi_{1+}(x)=\psi_{2+}(x)\rightarrow A\cosh(k_{1}b)=B\cosh(k_{2}b)$$$$\left.\frac{\text{d}\psi_{1+}}{\text{d}x}\right\vert_{x=b}=\left.\frac{\text{d}\psi_{2+}}{\text{d}x}\right\vert_{x=b}\rightarrow k_{1}A\sinh(k_{1}b)=-k_{2}B\sin(k_{2}b)$$$$\psi_{2+}(a)=B\cos(k_{2}a)=0$$
Now I see two ways to find the lowest even state energy. I can take the third relation and say $$\cos(k_{2}a)=0\rightarrow\frac{\sqrt{2mE}}{\hbar}a=\frac{\pi}{2}$$
and plugging in values gives ##E\approx480.4## keV. On the other hand, I can take divide the second equation by the first and get $$k_{1}\tanh(k_{1}b)=-k_{2}\tan(k_{2}b)$$ which by doing a change of variables ##\gamma=k_{1}b## and ##y=k_{2}b## gives $$\frac{\gamma}{b}\tanh(\gamma)=-\frac{y}{b}\tan(y)$$ or $$\gamma\tanh(\gamma)=-y\tan(y)$$ When I plot the functions ##x\tanh(x)## and ##-x\tan(x)##, I get an intersection point in the first quadrant at ##\left(2.36502,\ 2.32364\right)##. Now I take $$y=2.36502=\frac{\sqrt{2mE}}{\hbar}b$$ and I get ##E\approx6.8## MeV.
So I get two energies that are widely in contrast with each other. I'm not sure what I'm doing wrong.
Last edited: