MHB Finding equation normal to a plane and certain point

brunette15
Messages
58
Reaction score
0
For the following question I am given a plane: x + 2y + 3z = 12. I want to find the equation of a line normal to the plane and going through the point (4,6,8). I am trying to use the formula N . (r - r0) = 0 however seem to be getting the incorrect answer :(
 
Physics news on Phys.org
The line equation that passes through $a$ and is parallel to $b$ is $l(t)=a+tb$.

From the equation of the plane $x + 2y + 3z = 12$, we have that a normal vector to the plane is $(1,2,3)$.

We are looking for a line that is normal to the plane, so parallel to the vector $(1,2,3)$ and passes through the point $(4,6,8)$.

Can you find now the line equation?
 
evinda said:
The line equation that passes through $a$ and is parallel to $b$ is $l(t)=a+tb$.

From the equation of the plane $x + 2y + 3z = 12$, we have that a normal vector to the plane is $(1,2,3)$.

We are looking for a line that is normal to the plane, so parallel to the vector $(1,2,3)$ and passes through the point $(4,6,8)$.

Can you find now the line equation?

Thankyou so much I was able to figure it out from there :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
4
Views
5K