MHB Finding expected value from the moment generating function

oyth94
Messages
32
Reaction score
0
Suppose I have the MGF moment generating function mx(t) = (e^t -1)/t
How can I find EX?
 
Physics news on Phys.org
oyth94 said:
Suppose I have the MGF moment generating function mx(t) = (e^t -1)/t
How can I find EX?

If a r.v. X has m.g.f. $\displaystyle m_{X} (t) = E \{e^{t\ X}\}$, then... $\displaystyle E\{X^{n}\} = \lim_{t \rightarrow 0} \frac{d^{n} m_{X} (t)}{d t^{n}}\ (1)$

In Your case is...

$\displaystyle E\{X\} = \lim_{t \rightarrow 0} \frac{t\ e^{t} - e^{t} + 1}{t^{2}} = \frac{1}{2}\ (2)$ Kind regards $\chi$ $\sigma$
 
chisigma said:
If a r.v. X has m.g.f. $\displaystyle m_{X} (t) = E \{e^{t\ X}\}$, then... $\displaystyle E\{X^{n}\} = \lim_{t \rightarrow 0} \frac{d^{n} m_{X} (t)}{d t^{n}}\ (1)$

In Your case is...

$\displaystyle E\{X\} = \lim_{t \rightarrow 0} \frac{t\ e^{t} - e^{t} + 1}{t^{2}} = \frac{1}{2}\ (2)$ Kind regards $\chi$ $\sigma$

Thank you for your help. For how I did it was I used the series expansion for e^t which is the summation of (t)^k / k!
so
$$[(t^k / t!) - 1 ] / t$$ = [(1 + t/1 + t^2 / 2! + t^3 / 3! + ...) - 1] / t
then the 1s cancel out and I can factor out the t so it becomes
= 1 + t/2! + t^2 / 3! + ...
so when i use the moment generating function
mx^(k) (0) = EX
do i sub in t=0 and then the answer will be 1?
how do I go on from there? or is the answer e?
Confused!
How do you solve it using the series expansion?
 
oyth94 said:
Thank you for your help. For how I did it was I used the series expansion for e^t which is the summation of (t)^k / k!
so
$$[(t^k / t!) - 1 ] / t$$ = [(1 + t/1 + t^2 / 2! + t^3 / 3! + ...) - 1] / t
then the 1s cancel out and I can factor out the t so it becomes
= 1 + t/2! + t^2 / 3! + ...
so when i use the moment generating function
mx^(k) (0) = EX
do i sub in t=0 and then the answer will be 1?
how do I go on from there? or is the answer e?
Confused!
How do you solve it using the series expansion?

The result You have obtained...

$\displaystyle \frac{e^{t}-1}{t} = 1 + \frac{t}{2!} + \frac{t^{2}}{3!} + ...\ (1)$

... is absolutely correct... what is the matter?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The result You have obtained...

$\displaystyle \frac{e^{t}-1}{t} = 1 + \frac{t}{2!} + \frac{t^{2}}{3!} + ...\ (1)$

... is absolutely correct... what is the matter?...

Kind regards

$\chi$ $\sigma$

okay so i forgot to mention i have to take the derivative after i factor/cancel out the t right. so then it becomes
1 + t/2! + t^2 /3! + ...
derivative --> 1/2 + 2t/6 + ...
and then after i take the derivative i set t=0 because mx1(0) = EX
so from there i will get
EX = 1/2 as you said before.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top