Finding $f(1)$ in a Polynomial of Integer Coefficients $\leq$ 4

Click For Summary
SUMMARY

The polynomial function \( f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) is defined with integer coefficients \( a_0, a_1, \ldots, a_n \) all less than 4. Given that \( f(4) = 2009 \), the task is to determine \( f(1) \). The coefficients must be integers in the range of 0 to 3, leading to the conclusion that \( f(1) = 11 \) based on the calculated coefficients.

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Knowledge of integer coefficients and their constraints
  • Familiarity with evaluating polynomials at specific points
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore polynomial interpolation techniques
  • Study the properties of polynomials with bounded integer coefficients
  • Learn about polynomial evaluation methods
  • Investigate the implications of coefficient constraints on polynomial behavior
USEFUL FOR

Mathematicians, educators, and students interested in polynomial functions, particularly those focusing on integer coefficients and their evaluations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$, where $a_0, a_a,\cdots,a_n$ are all smaller than 4 and are integer, $a_n \in (0, 1, 2,\cdots)$.

Given that $f(4)=2009$, find $f(1)$.
 
Mathematics news on Phys.org
anemone said:
Given $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$, where $a_0, a_a,\cdots,a_n$ are all smaller than 4 and are integer, $a_n \in (0, 1, 2,\cdots)$.

Given that $f(4)=2009$, find $f(1)$.

= 1 + 3 + 3 + 1 + 2 + 1 = 11

as f(x) = x^5 + 3x^4 + 3x^3 + x^2 +2x +1

as no coefficient is >4 and we are given f(4) subtract the highest power of 4 as many times as it can go

2009 = 1024 + 985
985 = 256 * 3 + 217
217 = 64 * 3 + 25
25 = 16 + 9
9 = 2 *4 + 1
 
kaliprasad said:
= 1 + 3 + 3 + 1 + 2 + 1 = 11

as f(x) = x^5 + 3x^4 + 3x^3 + x^2 +2x +1

as no coefficient is >4 and we are given f(4) subtract the highest power of 4 as many times as it can go

2009 = 1024 + 985
985 = 256 * 3 + 217
217 = 64 * 3 + 25
25 = 16 + 9
9 = 2 *4 + 1

Hey kaliprasad,

Thanks for participating and yes, the answer is correct and your method is great and nice!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K