Finding $f(67500)$ with Given Conditions on $f(x)$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Conditions
Click For Summary
SUMMARY

The function \( f(x) \) is defined for natural numbers and satisfies the conditions \( f(xy) = f(x) + f(y) - 1 \), \( f(x) = 1 \) for finitely many \( x \), and \( f(90) = 5 \). To find \( f(67500) \), one must utilize the properties of the function along with its defined conditions. The discussion confirms that the correct value of \( f(90) \) is 5, which is crucial for solving the problem.

PREREQUISITES
  • Understanding of functional equations, specifically multiplicative functions.
  • Familiarity with natural number properties and their implications in mathematical functions.
  • Knowledge of prime factorization and its role in evaluating functions defined on natural numbers.
  • Basic problem-solving skills in mathematical Olympiad contexts.
NEXT STEPS
  • Study the properties of multiplicative functions in number theory.
  • Learn about the implications of functional equations in mathematical analysis.
  • Explore examples of similar problems involving natural number functions.
  • Investigate the role of prime factorization in determining function values.
USEFUL FOR

Mathematics students, particularly those preparing for Olympiad-level problems, and educators looking to enhance their understanding of functional equations and number theory.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that the function $f(x)$ is defined on the set of natural numbers, taking values from the natural numbers, and that it satisfies the following conditions:

(a) $f(xy)=f(x)+f(y)-1$ for any $x,y \in N$.

(b) the equality $f(x)=1$ is true for finitely many numbers.

(c) $f(90) = 5$

Find $f(67500)$.
 
Mathematics news on Phys.org
I have edited anemone's post to write $f(90)=5$ instead of $f(90)=6$. I helped her modify this problem from a past Olympiad problem, and I inadvertently gave her the wrong value. My apologies to everyone. (Wasntme)
 
anemone said:
Given that the function $f(x)$ is defined on the set of natural numbers, taking values from the natural numbers, and that it satisfies the following conditions:

(a) $f(xy)=f(x)+f(y)-1$ for any $x,y \in N$.

(b) the equality $f(x)=1$ is true for finitely many numbers.

(c) $f(90) = 5$

Find $f(67500)$.

Let me give it a try.

From (a) we find that $f(90) = f(2\cdot 3^2\cdot 5) = f(2) + 2f(3) + f(5) - 3$.
With (c) this yields:
$$f(2) + 2f(3) + f(5) - 3 = 5$$
$$f(2) + 2f(3) + f(5) = 8\qquad [1]$$

My lemma
Neither f(2), nor f(3), nor f(5) can be 1.
Proof
Suppose one of them is 1, say f(2), then $f(2^k) = kf(2) - k + 1=1$.
That means that infinitely many numbers x have f(x)=1.
This is a contradiction with (b).Combining my lemma with [1] tells us that $f(2)=f(3)=f(5)=2$.

It follows from (a) that:
$f(67500)=f(2^2\cdot 3^3\cdot 5^4)=2f(2)+3f(3)+4f(5) - 8=2\cdot 2 + 3\cdot 2 + 4\cdot 2 - 8 = 10. \qquad \blacksquare$
 
I like Serena said:
Let me give it a try.

From (a) we find that $f(90) = f(2\cdot 3^2\cdot 5) = f(2) + 2f(3) + f(5) - 3$.
With (c) this yields:
$$f(2) + 2f(3) + f(5) - 3 = 5$$
$$f(2) + 2f(3) + f(5) = 8\qquad [1]$$

My lemma
Neither f(2), nor f(3), nor f(5) can be 1.
Proof
Suppose one of them is 1, say f(2), then $f(2^k) = kf(2) - k + 1=1$.
That means that infinitely many numbers x have f(x)=1.
This is a contradiction with (b).Combining my lemma with [1] tells us that $f(2)=f(3)=f(5)=2$.

It follows from (a) that:
$f(67500)=f(2^2\cdot 3^3\cdot 5^4)=2f(2)+3f(3)+4f(5) - 8=2\cdot 2 + 3\cdot 2 + 4\cdot 2 - 8 = 10. \qquad \blacksquare$
Clever!

-Dan
 
I like Serena said:
Let me give it a try.

From (a) we find that $f(90) = f(2\cdot 3^2\cdot 5) = f(2) + 2f(3) + f(5) - 3$.
With (c) this yields:
$$f(2) + 2f(3) + f(5) - 3 = 5$$
$$f(2) + 2f(3) + f(5) = 8\qquad [1]$$

My lemma
Neither f(2), nor f(3), nor f(5) can be 1.
Proof
Suppose one of them is 1, say f(2), then $f(2^k) = kf(2) - k + 1=1$.
That means that infinitely many numbers x have f(x)=1.
This is a contradiction with (b).Combining my lemma with [1] tells us that $f(2)=f(3)=f(5)=2$.

It follows from (a) that:
$f(67500)=f(2^2\cdot 3^3\cdot 5^4)=2f(2)+3f(3)+4f(5) - 8=2\cdot 2 + 3\cdot 2 + 4\cdot 2 - 8 = 10. \qquad \blacksquare$

Thank you for participating, I like Serena! And your answer is correct!:cool:

topsquark said:
Clever!

-Dan

Indeed!(Star)(Star)(Star)
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
538
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
995
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K