MHB Finding for X given half-angle formulas

  • Thread starter Thread starter bsmithysmith
  • Start date Start date
  • Tags Tags
    Formulas
AI Thread Summary
Given that csc(x) = 4, it follows that sin(x) = 1/4 for the interval 90º < x < 180º. Using the Pythagorean identity, cos(x) is determined to be -√(15)/4, as cosine is negative in the second quadrant. The half-angle formulas can then be applied to find sin(x/2), cos(x/2), and tan(x/2). Since sin(x/2) will be positive and cos(x/2) negative, the tangent value will also be negative. This process emphasizes understanding the relationships between the trigonometric functions rather than merely applying formulas.
bsmithysmith
Messages
23
Reaction score
0
If $$csc(x)=4$$, for $$90º<x<180º$$
$$sin\left(\frac{x}{2}\right)=$$
$$cos\left(\frac{x}{2}\right)=$$
$$tan\left(\frac{x}{2}\right)=$$

I'm definitely stumped on this one. I know that this is the half-angle formulas. Luckily we all have sheets we can use for the exam. I know that:

$$csc(x)=4$$ is the same as $$sin(x)=1/4$$, am I correct?

From there, I don't know if I should do a sine inverse, or plug and chug for the half-angle formulas.

$$sin\left(\frac{x}{2}\right)=±√(\left(\frac{1}{2}\right)(1-Cos(2x)))$$

And I don't know if I have to plug for x on both sides, or if I have to find what cosine(2x) is, or If I have to plug in the double angle formula at the end there.
 
Mathematics news on Phys.org
Yes, you are right:

$$\csc(x)=4\implies \sin(x)=\frac{1}{4}$$

Now, looking at the half-angle identities for sine, cosine, and tangent, we see we need to know $\cos(x)$ as well. So, we can use the Pythagorean identity:

$$\cos^2(x)=1-\sin^2(x)=1-\left(\frac{1}{4}\right)^2=\frac{15}{16}$$

Now, when we take the square root of both sides to get $\cos(x)$, which sign should we take on the right, given the quadrant in which $x$ is said to be?
 
MarkFL said:
Yes, you are right:

$$\csc(x)=4\implies \sin(x)=\frac{1}{4}$$

Now, looking at the half-angle identities for sine, cosine, and tangent, we see we need to know $\cos(x)$ as well. So, we can use the Pythagorean identity:

$$\cos^2(x)=1-\sin^2(x)=1-\left(\frac{1}{4}\right)^2=\frac{15}{16}$$

Now, when we take the square root of both sides to get $\cos(x)$, which sign should we take on the right, given the quadrant in which $x$ is said to be?

Since it's at quadrant 2, all cosine values will be negative, and sine values will be positive. I suspect it'll be the same thing for the sine value, but what about the tangent value? I have the cheat sheet available, but I'd still rather understand the process than plug and chug.
 
Yes, cosine is negative in the second quadrant, so since:

$$\cos^2(x)=\frac{15}{16}$$

we must therefore conclude that:

$$\cos(x)=-\frac{\sqrt{15}}{4}$$

So, now you have all you need to find the half-angled values of the primary trig. functions, using the various half-angle identities. If sine is positive, and cosine is negative, and given:

$$\tan(\theta)\equiv\frac{\sin(\theta)}{\cos(\theta)}$$

then what sign would you expect for the tangent function to have?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top