Finding limit of a funciton with square roots.

  • Context: MHB 
  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Limit Roots Square
Click For Summary
SUMMARY

The limit of the function as \( x \) approaches 3 is calculated using the expression \(\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}\). By applying the technique of multiplying by the conjugate, the limit simplifies to \(\lim_{x\to3}\frac{5}{\sqrt{6x-14} + \sqrt{x+1}}\). Evaluating this limit at \( x = 3 \) yields a final result of 5 divided by the sum of the square roots, specifically \(\frac{5}{\sqrt{4} + \sqrt{4}} = \frac{5}{4}\).

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with square root functions
  • Knowledge of algebraic manipulation techniques, including conjugates
  • Basic differentiation concepts
NEXT STEPS
  • Study the properties of limits in calculus
  • Learn about the application of L'Hôpital's Rule for indeterminate forms
  • Explore the concept of continuity and its relation to limits
  • Practice solving limits involving square roots and rational functions
USEFUL FOR

Students studying calculus, mathematics educators, and anyone seeking to enhance their understanding of limit evaluation techniques involving square roots.

tmt1
Messages
230
Reaction score
0
I have to find this:

$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$$

So I do this:

$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3} * \frac{\sqrt{6x + 14} + \sqrt{x+1}}{\sqrt{6x + 14} + \sqrt{x+1}}$$

The top part is easy since

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) $$ is equal to $$a - b$$

So I have

$$\frac {5x- 14}{x\sqrt{6x+4} + x\sqrt{x+1} - 3\sqrt{6x+4} - 3\sqrt{x+1}} $$

From here I am lost.
 
Physics news on Phys.org
tmt said:
So I have

$$\frac {5x- 14}{x\sqrt{6x+4} + x\sqrt{x+1} - 3\sqrt{6x+4} - 3\sqrt{x+1}} $$
Then you divide the numerator and denominator by $x$ and find their limits separately.

Edit: Sorry, I missed the fact that the limit is when $x\to3$; I thought it is when $x\to\infty$.
 
Last edited:
Consider:

$$=\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$$
$$=\lim_{{x}\to{3}}\frac {\sqrt{6x - 14}-2 - \sqrt { x+1}+2}{x-3}$$
$$=\lim_{{x}\to{3}}\frac {\sqrt{6x - 14}-2 - (\sqrt { x+1}-2)}{x-3}$$
$$=\lim_{{x}\to{3}}\frac{\sqrt{6x-14}-2}{x-3}-\frac{\sqrt{x+1}-2}{x-3}$$
$$=\d{}{x}\sqrt{6x-14}|_{x=3}-\d{}{x}\sqrt{x+1}|_{x=3}$$

The rest is easy :D
 
Hello, tmt!

Find: $\displaystyle \lim_{x\to3}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$
$\displaystyle \lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3} * \frac{\sqrt{6x - 14} + \sqrt{x+1}}{\sqrt{6x - 14} + \sqrt{x+1}}$

$\displaystyle \quad=\; \lim_{x\to3}\frac{(6x-14) - (x+1)}{(x-3)(\sqrt{6x-14} + \sqrt{x+1})} \;=\; \lim_{x\to3}\frac{5x-15}{(x-3)(\sqrt{6x-14} + \sqrt{x+1}}$

$\displaystyle \quad=\;\lim_{x\to3}\frac {5(x- 3)}{(x-3)(\sqrt{6x-14} + \sqrt{x+1}} \;=\; \lim_{x\to3}\frac{5}{\sqrt{6x-14} + \sqrt{x+1}}$

Can you finish it now?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
366
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K