MHB Finding limit of a funciton with square roots.

Click For Summary
To find the limit of the function as x approaches 3, the expression is simplified using the conjugate method. The limit transforms into a fraction where the numerator becomes 5(x - 3) and the denominator involves the square roots of the original expressions. By canceling out (x - 3) from the numerator and denominator, the limit simplifies to 5 divided by the sum of the square roots evaluated at x = 3. The final result leads to the limit being equal to 5 divided by the sum of the square roots of 4 and 2, yielding a solution of 5/4.
tmt1
Messages
230
Reaction score
0
I have to find this:

$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$$

So I do this:

$$\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3} * \frac{\sqrt{6x + 14} + \sqrt{x+1}}{\sqrt{6x + 14} + \sqrt{x+1}}$$

The top part is easy since

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) $$ is equal to $$a - b$$

So I have

$$\frac {5x- 14}{x\sqrt{6x+4} + x\sqrt{x+1} - 3\sqrt{6x+4} - 3\sqrt{x+1}} $$

From here I am lost.
 
Mathematics news on Phys.org
tmt said:
So I have

$$\frac {5x- 14}{x\sqrt{6x+4} + x\sqrt{x+1} - 3\sqrt{6x+4} - 3\sqrt{x+1}} $$
Then you divide the numerator and denominator by $x$ and find their limits separately.

Edit: Sorry, I missed the fact that the limit is when $x\to3$; I thought it is when $x\to\infty$.
 
Last edited:
Consider:

$$=\lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$$
$$=\lim_{{x}\to{3}}\frac {\sqrt{6x - 14}-2 - \sqrt { x+1}+2}{x-3}$$
$$=\lim_{{x}\to{3}}\frac {\sqrt{6x - 14}-2 - (\sqrt { x+1}-2)}{x-3}$$
$$=\lim_{{x}\to{3}}\frac{\sqrt{6x-14}-2}{x-3}-\frac{\sqrt{x+1}-2}{x-3}$$
$$=\d{}{x}\sqrt{6x-14}|_{x=3}-\d{}{x}\sqrt{x+1}|_{x=3}$$

The rest is easy :D
 
Hello, tmt!

Find: $\displaystyle \lim_{x\to3}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3}$
$\displaystyle \lim_{{x}\to{3}}\frac {\sqrt{6x - 14} - \sqrt { x+1}}{x-3} * \frac{\sqrt{6x - 14} + \sqrt{x+1}}{\sqrt{6x - 14} + \sqrt{x+1}}$

$\displaystyle \quad=\; \lim_{x\to3}\frac{(6x-14) - (x+1)}{(x-3)(\sqrt{6x-14} + \sqrt{x+1})} \;=\; \lim_{x\to3}\frac{5x-15}{(x-3)(\sqrt{6x-14} + \sqrt{x+1}}$

$\displaystyle \quad=\;\lim_{x\to3}\frac {5(x- 3)}{(x-3)(\sqrt{6x-14} + \sqrt{x+1}} \;=\; \lim_{x\to3}\frac{5}{\sqrt{6x-14} + \sqrt{x+1}}$

Can you finish it now?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K