Finding limsup & liminf of Sequence of Sets $A_n$

Click For Summary
SUMMARY

The discussion focuses on finding the limit superior ($\limsup$) and limit inferior ($\liminf$) of sequences of sets $A_n$ as $n$ approaches infinity. The general formulas provided are $\limsup_n A_n = \bigcap_{n\geqslant 1}\bigcup_{k\geqslant n}A_k$ and $\liminf_n A_n = \bigcup_{n\geqslant 1}\bigcap_{k\geqslant n}A_k$. Three specific examples illustrate the application of these formulas, demonstrating that $\limsup_{n\rightarrow \infty}A_n$ results in intervals such as $(0,5)$ and $[0,4]$, while $\liminf_{n\rightarrow \infty}A_n$ yields intervals like $(0,1]$ and $[0,2)$. These results confirm the definitions and provide a clear method for evaluating sequences of sets.

PREREQUISITES
  • Understanding of limit superior and limit inferior in set theory
  • Familiarity with interval notation (open and closed intervals)
  • Basic knowledge of sequences and their convergence
  • Experience with mathematical notation and definitions in analysis
NEXT STEPS
  • Study the properties of $\limsup$ and $\liminf$ in more complex set sequences
  • Explore applications of $\limsup$ and $\liminf$ in real analysis
  • Learn about convergence of sequences of functions and their limits
  • Investigate the relationship between set limits and topology
USEFUL FOR

Mathematicians, students of real analysis, and anyone studying sequences of sets and their limits will benefit from this discussion.

kalish1
Messages
79
Reaction score
0
I would like to know if there is a general formula, and if so, what it is, for finding the $limsup$ and $liminf$ of a sequence of sets $A_n$ as $n\rightarrow \infty$.

I know the following examples:

**(1)**

for $A_n=(0,a_n], (a_1,a_2)=(10,200)$, $a_n=1+1/n$ for $n$ odd and $a_n=5-1/n$ for $n$ even, and $n\geq 3$,

$limsup_{n\rightarrow \infty}a_n = 5$, $liminf_{n\rightarrow \infty}a_n = 1$, $limsup_{n\rightarrow \infty}A_n = (0,5)$, $liminf_{n\rightarrow \infty}A_n = (0,1]$.

**(2)**

for $A_n=[0,a_n), (a_1,a_2,a_3,a_4)=(10,100,1000,10000)$, $a_{2n+1}=2-1/(2n+1)$ for $n\geq2$ and $a_{2n}=4+1/(2n)$ for $n\geq4$,

$limsup_{n\rightarrow \infty}a_n = 4$, $liminf_{n\rightarrow \infty}a_n = 2$, $limsup_{n\rightarrow \infty}A_n = [0,4]$, $liminf_{n\rightarrow \infty}A_n = [0,2)$.

**(3)**

for $A_n=(0,a_n], (a_1,a_2)=(50,20)$, $a_{3n}=1+1/(3n), a_{3n+1}=1+1/(3n+1), a_{3n+2}=3-(1/3n+2)$ for $n\geq1$,

$limsup_{n\rightarrow \infty}a_n = 3$, $liminf_{n\rightarrow \infty}a_n = 1$, $limsup_{n\rightarrow \infty}A_n = (0,3)$, $liminf_{n\rightarrow \infty}A_n = (0,1)$.

**Is there a general formula describing $limsup_{n\rightarrow \infty}A_n$ and $liminf_{n\rightarrow \infty}A_n$ with the open/closed interval notation, for an arbitrarily defined $\{a_n\}$?**

Thanks for any help!
 
Physics news on Phys.org
In general, when we consider the $\limsup$ and $\liminf$ of an arbitrary sequence of sets (not necessarily intervals), we have the definition $\limsup_n A_n:=\bigcap_{n\geqslant 1}\bigcup_{k\geqslant n}A_k$ and $\liminf_n A_n:=\bigcup_{n\geqslant 1}\bigcap_{k\geqslant n}A_k$. That is, $x\in\limsup_n A_n$ if the set $\{n,x\in A_n\}$ is infinite, while $x\in\liminf_nA_n$ if $\{n,x\in A_n\}$ contains all but finitely many positive integers.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
7K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K