To find m<2 when m<1 and m<2 are given as vertical angles, set the equations equal: 17x + 1 = 20x - 14. Solving for x yields x = 5. Substituting x back into either angle's equation, m<1 or m<2, results in m<2 = 101. Therefore, the measure of angle 2 is 101 degrees.
#1
bernardl
4
0
<1 and <2 are vertical angles. If m<1 = 17x + 1 and m<2 = 20x - 14, find m<2.
As vertical angles have the same measure, set 17x + 1 = 20x - 14, solve for x and substitute that value for x into the expression for angle 2 (or angle 1 if you prefer; they both have the same measure). The result is the desired measure.
Greg tells me the feature to generate a new insight announcement is broken, so I am doing this:
https://www.physicsforums.com/insights/fixing-things-which-can-go-wrong-with-complex-numbers/
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes.
I have seen that this is an important subject in maths
My question is what physical applications does such a model apply to?
I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra
Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/
by...