MHB Finding Maclaurin series of a natural log function

Click For Summary
To find the Maclaurin series for the function f(x) = ln(1 - x^2), the method of substituting -x^2 into the series for ln(1 + x) is valid, yielding a series of the form -x^2 + (x^4/2) - (x^6/3) + ... However, the correct representation of the series should be - (x^2 + (x^4/2) + (x^6/3) + ...), which reflects the series' convergence properties. Additionally, the function can be expressed as ln(1 - x^2) = ln(1 - x) + ln(1 + x), leading to the differentiation of each logarithmic component. The derivatives can be related to geometric series, providing further insight into the behavior of the function near x = 0. Understanding these relationships is crucial for accurately determining the Maclaurin series.
tmt1
Messages
230
Reaction score
0
I need to find the Maclaurin series of this function:

$$f(x) = ln(1 - x^2)$$

I know that $ln(1 + x)$ equals

$$\sum_{n = 1}^{\infty}\frac{(-1)^{n - 1} x^n}{n}$$

Or, $x - \frac{x^2}{2} + \frac{x^3}{3} ...$

If I swap in $-x^2$ for x, I get:

$$-x^2 + \frac{x^4}{2} - \frac{x^5}{3} + \frac{x^6}{4} ...$$

Is this a valid method?

However, the answer in the text says

$$- (x^2 + \frac{x^4}{2} + \frac{x^6}{3} ...)$$
 
Physics news on Phys.org
tmt said:
I need to find the Maclaurin series of this function:

$$f(x) = ln(1 - x^2)$$

I know that $ln(1 + x)$ equals

$$\sum_{n = 1}^{\infty}\frac{(-1)^{n - 1} x^n}{n}$$

Or, $x - \frac{x^2}{2} + \frac{x^3}{3} ...$

If I swap in $-x^2$ for x, I get:

$$-x^2 + \frac{x^4}{2} - \frac{x^5}{3} + \frac{x^6}{4} ...$$

Is this a valid method?

However, the answer in the text says

$$- (x^2 + \frac{x^4}{2} + \frac{x^6}{3} ...)$$

$\displaystyle \begin{align*} \ln{ \left( 1 - x^2 \right) } &= \ln{ \left[ \left( 1 - x \right) \left( 1 + x \right) \right] } \\ &= \ln{ \left( 1 - x \right) } + \ln{ \left( 1 + x \right) } \end{align*}$

so that means

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ \ln{ \left( 1 - x^2 \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \ln{ \left( 1 - x \right) } + \ln{\left( 1 + x \right) } \right] \\ &= -\frac{1}{1 - x} + \frac{1}{1 + x} \end{align*}$

Can you relate each of these to a geometric series?
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K