Undergrad Finding matrices of perturbation using creation/annihilation operators

Click For Summary
The discussion focuses on determining the matrix representation of a perturbation operator W for a 3D harmonic oscillator in the first excited state. The operator W is expressed in terms of creation and annihilation operators, leading to confusion about the appropriate basis for matrix elements. It is clarified that a single energy eigenstate, such as |1,0,0>, cannot serve as a complete basis, and an infinite number of states are required for a proper representation. The operator W is also related to the electric quadrupole, and there is uncertainty about whether to continue using creation/annihilation operators or switch to position operators for this calculation. The conversation highlights the complexities of quantum mechanics and the need for a comprehensive understanding of the system's states.
Keru
Messages
20
Reaction score
1
"Given a 3D Harmonic Oscillator under the effects of a field W, determine the matrix for W in the base given by the first excited level"

So first of all we have to arrange W in terms of the creation and annihilation operator. So far so good, with the result:

W = 2az2 - ax2 - ay2 + 2az+ 2 -ax+ 2 -ay+ 2 + 2{az, az+}) - {ax, ax+}) - {ay, ay+}

As for the following part, I've proceeded like this, which I'm pretty sure it's wrong at some point.

In terms of the ladder operator, I'm using the basis:
|nx, ny,nz>

With ni corresponding to the level of excitement on a certain coordinate. I have taken the first excited level to be:

|1,0,0>

I generally find the matrix elements like:

Mi,j = <i|M^|j>

So my thought has been, I have to find them in the basis |1,0,0>, let's just:

<1,0,0|W|1,0,0>

Which looks terrible because that's clearly a 1x1 "matrix".
What am I missing? Do the matrix actually correspond to |1,0,0>, |0,1,0>, |0,0,1> since all these possible combinations correspond to the first energy state? Is that simply not the basis I should be using?

Any help would be greatly appreciated.
 
Physics news on Phys.org
Where is this from and what's the operator ##\hat{W}(\hat{x},\hat{y},\hat{z})## in terms of the position operators ##\hat{x},\hat{y},\hat{z}## ?

A single energy eigenstate (like the first excited level) obviously can't be a basis for the system, you need an infinite number of states.
 
hilbert2 said:
Where is this from and what's the operator ##\hat{W}(\hat{x},\hat{y},\hat{z})## in terms of the position operators ##\hat{x},\hat{y},\hat{z}## ?

A single energy eigenstate (like the first excited level) obviously can't be a basis for the system, you need an infinite number of states.

In terms of position operators it is:
W = 2z2 - x2 - y2
and it comes from the electric cuadrupole.

So, there's something I'm not getting right then. I'll try to translate the exercise as precisely as possible:
"Determine the matrix of W in the base given by the states of the first energy excitation". Should I do all in terms of position operators and forget about creation/annihilation operators? The previous section asked us to express it in terms of them, but this one does not explicitly tell us to use them, so maybe it's just nonsensical trying to do it like i was?
Sorry if the question seems obvious I am pretty much new at this.
 
If the ##\hat{W} = 2\hat{z}^2 - \hat{x}^2 - \hat{y}^2## is supposed to be a potential energy (you first have to multiply it with something of dimensions [energy]/[length]^2 to make it have dimensions of energy), then it doesn't have a ground state at all because the potential does not have a lower limit (it can be as negative as you want if you increase ##x## or ##y## enough). Let's see what others say about this.
 
  • Like
Likes Keith_McClary
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K