MHB Finding Max and Min of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Max
Albert1
Messages
1,221
Reaction score
0
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$
 
Mathematics news on Phys.org
Albert said:
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$

we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
 
Last edited:
kaliprasad said:
we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} \sin ^2 \alpha$-----(*)
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)
 
Albert said:
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)

Thanks done the needful
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top