Finding Max and Min of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Max
Click For Summary

Discussion Overview

The discussion revolves around finding the maximum and minimum values of the function $sin(x)sin(y)$ under the constraint $x+y=\dfrac {2\pi}{3}$, with the additional condition that $0\leq x\leq \dfrac{\pi}{2}$. The focus is on mathematical reasoning related to optimization within specified bounds.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Participants state the problem of maximizing and minimizing the function $sin(x)sin(y)$ given the constraint.

Areas of Agreement / Disagreement

The discussion does not present any disagreement or competing views, but it remains unresolved as no solutions or methods have been provided to address the problem.

Contextual Notes

There are no specific limitations or assumptions discussed, but the problem is framed within the context of the given constraints.

Who May Find This Useful

Individuals interested in mathematical optimization, particularly in the context of trigonometric functions and constraints.

Albert1
Messages
1,221
Reaction score
0
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$
 
Physics news on Phys.org
Albert said:
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$

we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
 
Last edited:
kaliprasad said:
we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} \sin ^2 \alpha$-----(*)
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)
 
Albert said:
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)

Thanks done the needful
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K