MHB Finding Max and Min of $sin(x)sin(y)$ given $x+y=\dfrac {2\pi}{3}$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Max
Click For Summary
To find the maximum and minimum of the function $sin(x)sin(y)$ under the constraint $x+y=\dfrac{2\pi}{3}$ and $0\leq x\leq \dfrac{\pi}{2}$, it is essential to express $y$ in terms of $x$, leading to $y=\dfrac{2\pi}{3}-x$. The function then becomes $sin(x)sin\left(\dfrac{2\pi}{3}-x\right)$. By analyzing the behavior of this function within the given bounds, the maximum occurs at specific critical points derived from the first derivative test, while the minimum can be evaluated at the endpoints of the interval. The solution provides insights into the optimal values of $x$ and $y$ that yield the desired extrema for the product $sin(x)sin(y)$.
Albert1
Messages
1,221
Reaction score
0
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$
 
Mathematics news on Phys.org
Albert said:
$x+y=\dfrac {2\pi}{3}$

$0\leq x\leq \dfrac{\pi}{2}$

$find: $

$(1):max(sin(x)sin(y))$

$(2):min(sin(x)sin(y))$

we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
 
Last edited:
kaliprasad said:
we have
$\sin (A+B) \sin (A-B) = (\sin\, A \cos\, B + \cos \, A \sin \, B) (\sin\, A \cos\, B - \cos \, A \sin \, B)$
$=(\sin^2 A \cos^2 B - \cos^2 A \sin^2 B) = \sin ^2 A (1- sin ^2 B ) - \sin ^2 B ( 1 - sin ^2 A) = \sin ^2 A - \sin ^2 B$
let $x= \frac {\pi}{3} + \alpha$ and hence $y = \frac {\pi}{3} - \alpha$
so
$\sin\, \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} \sin ^2 \alpha$-----(*)
the above is maximum when $\sin^2 \alpha = 0$ minimum or $x = y = \frac {\pi}{3}$ and value is $\frac{3}{4}$
now both A and B are 0 or positive and minumum is zero when $x= 0, y = \frac{2\pi}{3}$
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)
 
Albert said:
(*)=
$\sin\,x \sin\, y = \sin ^2 \frac {\pi}{3} - \sin ^2 \alpha = \frac{3}{4} - \sin ^2 \alpha$-----(*)

Thanks done the needful
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K