MHB Finding $\overline {AD} \times \overline {CD}$ in $\triangle APB$

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
In triangle APB, with PA equal to PB and angle APB being twice angle ACB, point D is defined as the intersection of lines AC and BP. Given that BP measures 3 and PD measures 2, the task is to find the product of lengths AD and CD. The discussion highlights the importance of identifying point C for a complete solution. The initial query emphasizes the geometric relationships and the need for precise calculations. The conversation indicates an engagement with geometric principles to solve the problem effectively.
Albert1
Messages
1,221
Reaction score
0
$\triangle APB, \overline {PA}=\overline {PB}, \angle APB=2\angle ACB, $
point $D$ is the intersection of $\overline {AC}$, and $\overline {BP}$
if $\overline {BP}=3 , \overline {PD}=2$
please find the value of $\overline {AD}\times \overline {CD}$
 
Mathematics news on Phys.org
Hi Albert. Where is point $C$?
 
Since the problem implies (truthfully) that it does not matter where C or A is located up to the constraints (on circle), I picked AC to be vertical.

View attachment 4989

This depicts one of the Pythagorean Means, specifically the Geometric Mean.
That is to say; Length AD is the GM of DB and 6-DB. AD = SQRT(1*5).

AD=DC so AD*DC = 5
(proof of the implication not being required, makes this a simple problem)
 

Attachments

  • Capture.PNG
    Capture.PNG
    6.7 KB · Views: 118
Last edited by a moderator:
RLBrown said:
Since the problem implies (truthfully) that it does not matter where C or A is located up to the constraints (on circle), I picked AC to be vertical.
This depicts one of the Pythagorean Means, specifically the Geometric Mean.
That is to say; Length AD is the GM of DB and 6-DB. AD = SQRT(1*5).

AD=DC so AD*DC = 5
(proof of the implication not being required, makes this a simple problem)
very good solution !
 

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K