MHB Finding Primitive Roots Modulo 169: Is There a Smarter Way?

  • Thread starter Thread starter tda1201
  • Start date Start date
  • Tags Tags
    Primitive Root
Click For Summary
To find a primitive root modulo 169, it is established that either 2 or 15 can serve as a primitive root. Testing 2 is the first step; if it does not work, then 15 is the alternative. The discussion emphasizes that checking all orders dividing φ(13²) is unnecessary; instead, one should verify orders derived from φ(13²) divided by distinct primes. Since 2 is a primitive root mod 13, its order mod 169 will either be 12 or 156, simplifying the verification process. Ultimately, confirming whether 2 is a primitive root mod 169 eliminates the need to check other powers.
tda1201
Messages
8
Reaction score
0
How can I find a primitive root modulo 169?
I found the primitive roots mod 13 by testing 2, and then concluding that any 2^k with (k, 12)=1 would do. So that gave me 2, 6, 7 and 11. But modulo 13 I have no idea how to start.. I’m sure there’s a smarter way than trying 2^the orders that divide phi(13^2)..?.
 
Mathematics news on Phys.org
tda120 said:
How can I find a primitive root modulo 169?
I found the primitive roots mod 13 by testing 2, and then concluding that any 2^k with (k, 12)=1 would do. So that gave me 2, 6, 7 and 11. But modulo 13 I have no idea how to start.. I’m sure there’s a smarter way than trying 2^the orders that divide phi(13^2)..?.
Hi tda, and welcome to MHB. You might be interested in this link, which tells you that the answer to your question is either $2$ or $2+13=15$. That still leaves you with the work of testing to see if $2$ works. If it does not, then $15$ does.
 
tda120 said:
How can I find a primitive root modulo 169?

There is no simple method. You can cobble up together some basic theories on primitive roots, find a bit of a rough upperbound (although none is known to be useful for small cases) and some modular exponentiation to get a fast enough algorithm.

As Opalg there indicated, that either 2 or 15 is primitive root modulo 169, can easily be found for this case. Try proving the former and then the later if it doesn't work.
 
tda120 said:
How can I find a primitive root modulo 169?
I found the primitive roots mod 13 by testing 2, and then concluding that any 2^k with (k, 12)=1 would do. So that gave me 2, 6, 7 and 11. But modulo 13 I have no idea how to start.. I’m sure there’s a smarter way than trying 2^the orders that divide phi(13^2)..?.

You don't have to check all the orders that divide $\phi(13^2)$.
It suffices to check each of the orders that are $\phi(13^2)$ divided by one of the distinct primes it contains.

In your case:
$$\phi(13^2)=2^2\cdot 3 \cdot 13$$
So the orders to verify are:
$$2\cdot 3 \cdot 13,\quad 2^2 \cdot 13, \quad 2^2\cdot 3$$
 
Opalg said:
Hi tda, and welcome to MHB. You might be interested in this link, which tells you that the answer to your question is either $2$ or $2+13=15$. That still leaves you with the work of testing to see if $2$ works. If it does not, then $15$ does.

Nice!

From that link we also get that since 2 is a primitive root mod 13, it follows that the order of 2 mod 169 is either (13-1) or 13(13-1).
So if $2^{13-1} \not\equiv 1 \pmod{169}$ that means that 2 has to be a primitive root mod 169. Or otherwise 15 has to be.

In other words, no need to check any of the other powers.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
Replies
4
Views
2K