MHB Finding Primitive Roots Modulo 169: Is There a Smarter Way?

  • Thread starter Thread starter tda1201
  • Start date Start date
  • Tags Tags
    Primitive Root
tda1201
Messages
8
Reaction score
0
How can I find a primitive root modulo 169?
I found the primitive roots mod 13 by testing 2, and then concluding that any 2^k with (k, 12)=1 would do. So that gave me 2, 6, 7 and 11. But modulo 13 I have no idea how to start.. I’m sure there’s a smarter way than trying 2^the orders that divide phi(13^2)..?.
 
Mathematics news on Phys.org
tda120 said:
How can I find a primitive root modulo 169?
I found the primitive roots mod 13 by testing 2, and then concluding that any 2^k with (k, 12)=1 would do. So that gave me 2, 6, 7 and 11. But modulo 13 I have no idea how to start.. I’m sure there’s a smarter way than trying 2^the orders that divide phi(13^2)..?.
Hi tda, and welcome to MHB. You might be interested in this link, which tells you that the answer to your question is either $2$ or $2+13=15$. That still leaves you with the work of testing to see if $2$ works. If it does not, then $15$ does.
 
tda120 said:
How can I find a primitive root modulo 169?

There is no simple method. You can cobble up together some basic theories on primitive roots, find a bit of a rough upperbound (although none is known to be useful for small cases) and some modular exponentiation to get a fast enough algorithm.

As Opalg there indicated, that either 2 or 15 is primitive root modulo 169, can easily be found for this case. Try proving the former and then the later if it doesn't work.
 
tda120 said:
How can I find a primitive root modulo 169?
I found the primitive roots mod 13 by testing 2, and then concluding that any 2^k with (k, 12)=1 would do. So that gave me 2, 6, 7 and 11. But modulo 13 I have no idea how to start.. I’m sure there’s a smarter way than trying 2^the orders that divide phi(13^2)..?.

You don't have to check all the orders that divide $\phi(13^2)$.
It suffices to check each of the orders that are $\phi(13^2)$ divided by one of the distinct primes it contains.

In your case:
$$\phi(13^2)=2^2\cdot 3 \cdot 13$$
So the orders to verify are:
$$2\cdot 3 \cdot 13,\quad 2^2 \cdot 13, \quad 2^2\cdot 3$$
 
Opalg said:
Hi tda, and welcome to MHB. You might be interested in this link, which tells you that the answer to your question is either $2$ or $2+13=15$. That still leaves you with the work of testing to see if $2$ works. If it does not, then $15$ does.

Nice!

From that link we also get that since 2 is a primitive root mod 13, it follows that the order of 2 mod 169 is either (13-1) or 13(13-1).
So if $2^{13-1} \not\equiv 1 \pmod{169}$ that means that 2 has to be a primitive root mod 169. Or otherwise 15 has to be.

In other words, no need to check any of the other powers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top