1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Finding Spin Expectation Values At Any Time t > 0

  1. Feb 3, 2017 #1
    1. The problem statement, all variables and given/known data
    Write down a spinor that represents the spin state of the particle at any time t > 0. Use the expression to find the expectation values of ##S_x## and ##S_y##

    2. Relevant equations
    The particle is a spin-##\frac 1 2## particle, the gyromagnetic ratio is ##\gamma_s \lt 0##, and the magnetic field points in the ##z## direction.

    The initial spin state is: ##| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}##
    3. The attempt at a solution
    This is where I've got so far:
    $$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=a_u|\uparrow_n \rangle+a_d|\downarrow_n \rangle$$
    Finding ##|\uparrow_n \rangle## and ##|\downarrow_n \rangle## using ##|\uparrow_n \rangle=\begin{bmatrix}\cos(\theta / 2)\\e^{i\phi}\sin(\theta / 2)\end{bmatrix}## and ##|\downarrow_n \rangle=\begin{bmatrix}-e^{-i\phi}\sin(\theta / 2)\\\cos(\theta / 2)\end{bmatrix}##. The magnetic field points in the ##z## direction so ##\theta = 0## and ##\phi = 0##:
    $$|\uparrow_z \rangle=\begin{bmatrix}\cos(0)\\e^0\sin(0)\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} \\ |\downarrow_z \rangle=\begin{bmatrix}-e^0\sin(0)\\\cos(0)\end{bmatrix}=\begin{bmatrix}0\\1\end{bmatrix}$$
    Finding the coeffecients ##a_u## and ##a_d##:
    $$a_u=\langle \uparrow_z | A \rangle=\frac 1 5 \begin{bmatrix}1&0\end{bmatrix} \begin{bmatrix}3\\4\end{bmatrix}=\frac 3 5 \\ a_d=\langle \downarrow_z | A \rangle=\frac 1 5 \begin{bmatrix}0&1\end{bmatrix} \begin{bmatrix}3\\4\end{bmatrix}=\frac 4 5$$
    So:
    $$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac 3 5 \begin{bmatrix}1\\0\end{bmatrix} + \frac 4 5 \begin{bmatrix}0\\1\end{bmatrix}$$
    Using the the equation for spin at any time ##| A \rangle=a_u e^{-iE_ut/\hbar}|\uparrow_n\rangle + a_d e^{-iE_dt/\hbar}|\downarrow_n\rangle## and since ##\gamma_s \lt 0## the energy eigenvalues are ##E_u=+\frac {\hbar \omega} 2## and ##E_d=-\frac {\hbar \omega} 2## I get:
    $$| A \rangle=\frac 3 5 e^{-i\omega t/2}\begin{bmatrix}1\\0\end{bmatrix} + \frac 4 5 e^{+i\omega t/2}\begin{bmatrix}0\\1\end{bmatrix}$$
    And so the spinor I get to is:
    $$| A \rangle=\frac 1 5\begin{bmatrix}3 e^{-i\omega t/2}\\4 e^{+i\omega t/2}\end{bmatrix}$$
    For the expectation value of ##S_x## I get:
    $$\begin{align} \langle S_x \rangle & =\langle A | \hat {\mathrm S}_x | A \rangle \nonumber \\ & =\frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar 2 \begin{bmatrix}0&1\\1&0\end{bmatrix} \frac 1 5 \begin{bmatrix}3 e^{-i\omega t/2} \\ 4 e^{+i\omega t/2}\end{bmatrix} \nonumber \\ & = \frac 1 5 \begin{bmatrix}3 e^{+i\omega t/2} & 4 e^{-i\omega t/2}\end{bmatrix} \frac \hbar {10} \begin{bmatrix}4 e^{+i\omega t/2} \\ 3 e^{-i\omega t/2} \end{bmatrix} \nonumber \\ & = \frac \hbar {50} \left( 12e^{i\omega t} + 12e^{i\omega t} \right) \nonumber \\ & = \frac {12\hbar} {25} e^{iwt} \nonumber \end{align}$$
    Could someone tell me if i'm along the right lines with this. I've been working on this for so long now I'm starting to lose sight of how this should workout.
    Thanks
     
  2. jcsd
  3. Feb 3, 2017 #2

    DrClaude

    User Avatar

    Staff: Mentor

    You made a mistake going from line 4 to line 5 line 3 to 4 in there, so the final result is not correct. Otherwise, it looks fine.
     
    Last edited: Feb 3, 2017
  4. Feb 3, 2017 #3

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Just an observation. The formulas you are using are valid for the "z-basis" where ##\begin{bmatrix}1\\0\end{bmatrix}## is the z-spin-up and ##\begin{bmatrix}0\\1\end{bmatrix}## is the z-spin-down. So, ##a_u = \frac35## and ##a_d = \frac45## immediately.

    In other words, by definition:$$| A \rangle_{initial}=\frac 1 5 \begin{bmatrix}3\\4\end{bmatrix}=\frac35 |\uparrow_z \rangle + \frac45 |\downarrow_z \rangle$$
     
  5. Feb 3, 2017 #4
    I had a feeling there was something wrong somewhere, I'll take another look. Thanks for your help.
     
  6. Feb 3, 2017 #5
    Thanks PeroK. When I was working through that I realised it just led back to the initial spin state because of the z-basis. Is the method I used a general way of calculating a spinor in any direction ##n##?
     
  7. Feb 3, 2017 #6

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yes, the formulas you used would give you (expressed in the z-basis) the eigenspinors in the direction ##n##.
     
  8. Feb 3, 2017 #7
    Thanks. I think I'm finally starting to get my head round this now.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Finding Spin Expectation Values At Any Time t > 0
Loading...