Finding State Matrices for a Mass Spring System

Click For Summary
SUMMARY

The discussion focuses on deriving state matrices for a mass-spring system characterized by the transfer function \(H(s) = \frac{X_1(s)}{F(s)}\). The state-space representation involves matrices \(\mathbf{A}\), \(\mathbf{B}\), \(\mathbf{C}\), and \(\mathbf{D}\), which are defined based on the system's dynamics. The user struggles with the complexity of the transfer function and the correct formulation of state variables, particularly in relation to the presence of derivatives of the input in the state equations. The correct state matrices are provided, but the user seeks clarification on their implementation.

PREREQUISITES
  • Understanding of state-space representation in control systems
  • Familiarity with transfer functions and their derivation
  • Knowledge of differential equations and their applications in mechanical systems
  • Proficiency in linear algebra, particularly matrix operations
NEXT STEPS
  • Study the derivation of state-space models from transfer functions in control theory
  • Learn about the implications of input derivatives in state-space representations
  • Explore numerical methods for solving differential equations in mechanical systems
  • Investigate the use of MATLAB or Python for simulating mass-spring systems
USEFUL FOR

Mechanical engineers, control system designers, and students studying dynamics and control theory will benefit from this discussion, particularly those interested in modeling and simulating mass-spring systems.

Dustinsfl
Messages
2,217
Reaction score
5
I am trying to find the state equations for a mass spring system.
I found the transfer function to be
\[
H(s) = \frac{X_1(s)}{F(s)} = \frac{m_2s^2 + b_2s + k}
{s\big[m_1m_2s^3 + (m_2b_1 + m_1b_2)s^2 +
(k(m_1 + m_2) + b_1b_2)s + k(b_1 + b_2)\big]}
\]
I found the transfer function from
\begin{align}
m_1\ddot{x}_1 &= F - b_1\dot{x}_1 - k(x_1 - x_2)\\
m_2\ddot{x}_2 &= - b_2\dot{x}_2 - k(x_2 - x_1)
\end{align}
So I am trying to find the state matrices \(\mathbf{A}\), \(\mathbf{B}\), \(\mathbf{C}\), and \(\mathbf{D}\) where
\begin{align}
\dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}F\\
\mathbf{y} &= \mathbf{C}\mathbf{x} + \mathbf{D}F
\end{align}
The transfer function is extremely complicated though. How can I obtain the state matrices?

I do know what the matrices are, but I can't find obtain them:
\begin{align}
\mathbf{A} &=
\begin{bmatrix}
0 & 1 & 0 & 0\\
-\frac{k}{m_1} & -\frac{b_1}{m_1} & \frac{k}{m_1} & 0\\
0 & 0 & 0 & 1\\
\frac{k}{m_2} & 0 & -\frac{k}{m_2} & -\frac{b_2}{m_2}
\end{bmatrix}\\
\mathbf{B} &=
\begin{bmatrix}
0\\
\frac{1}{m_1}\\
0\\
0
\end{bmatrix}\\
\mathbf{C} &=
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 0 & 1 & 0
\end{bmatrix}\\
\mathbf{D} &= \mathbf{0}
\end{align}
 
Last edited:
Physics news on Phys.org
We can write this as one differential equation:
\[
m_1m_2\ddddot{w} + (m_1b_2 + m_2b_1)\dddot{w} + (k(m_1 + m_2) + b_1b_2)\ddot{w} + k(b_1 + b_2)\dot{w} = m_2\ddot{u} + b_2\dot{u} + ku
\]
If the LHS had only a 3rd time derivative and the RHS had only a first time derivative, I could follow the (harder) labeled example here.
But I have tried to follow that idea by setting up the q derivatives as
\begin{alignat}{2}
q_1 &= w\\
q_2 &= \dot{w}\\
q_3 &= \ddot{w}\\
q_4 &= \dddot{w} - m_2\dot{u} - b_2u\\
\dot{q}_1 &= \dot{w} &&={} q_2\\
\dot{q}_2 &= \ddot{w} &&={} q_3\\
\dot{q}_3 &= \dddot{w} &&={} q_4\\
\dot{q}_4 &= \ddddot{w} -m_2\ddot{u} - b_2\dot{u}
\end{alignat}
However, this didn't seem to work. Should the q's be setup differently? Or am I not implementing this correctly?
From my implementation, I had
\begin{align}
\dot{q}_4 &= ku - (m_2^2b_1 + m_1m_2b_2)\dot{u} - (m_2b_1b_2 + m_1b_2^2)u - (m_2b_1 + m_1b_2)q_4 - q_3(k(m_1 + m_2) + b_1b_2) - k(b_1 + b_2)q_2
\end{align}
However, I am suspect of
\[
- (m_2^2b_1 + m_1m_2b_2)\dot{u} - (m_2b_1b_2 + m_1b_2^2)u - (m_2b_1 + m_1b_2)q_4
\]
since there is a \(\dot{u}\) present which came from
\[
\dddot{w}(m_2b_1 + m_1b_2) = (m_2\dot{u} + b_2u + q_4)(m_2b_1 + m_1b_2).
\]
In the harder example, it says "The method has failed because there is a derivative of the input on the right hand, and that is not allowed in a state space model." This cause the concern with \(\dot{u}\) in \(\dot{q}_4\). Thus, I am lead to believe I need a slightly different setup for this problem.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K