Finding tensor components via matrix manipulations

Click For Summary
The discussion focuses on finding various tensor components from a given tensor and vector using matrix manipulations. Participants confirm the correctness of calculations for components such as {X^{\mu}}_{\nu}, {X_{\mu}}^{\nu}, and the symmetric and antisymmetric parts of the tensor. There is clarification on the application of the metric tensor for raising and lowering indices, particularly in the context of calculating V^{\mu}V_{\mu} and V_{\mu}X^{\mu\nu}. The final calculations for all parts, including the trace and vector-tensor products, are verified as correct. The thread concludes with acknowledgment of assistance received in solving the problem.
spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement



Imagine we have a tensor ##X^{\mu\nu}## and a vector ##V^{\mu}##, with components

##
X^{\mu\nu}=\left( \begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right), \qquad V^{\mu} = (-1,2,0,-2).
##

Find the components of:

(a) ##{X^{\mu}}_{\nu}##
(b) ##{X_{\mu}}^{\nu}##
(c) ##X^{(\mu\nu)}##
(d) ##X_{[\mu\nu]}##
(e) ##{X^{\lambda}}_{\lambda}##
(f) ##V^{\mu}V_{\mu}##
(g) ##V_{\mu}X^{\mu\nu}##

Homework Equations



The Attempt at a Solution



(a) ##{X^{\mu}}_{\nu}=X^{\mu\rho}\eta_{\rho\nu}=\left( \begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right)
\left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right)=\left( \begin{array}{cccc}
-2 & 0 & 1 & -1 \\
1 & 0 & 3 & 2 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & -2 \end{array} \right)
##,

where the rows of the left matrix are multiplied by the columns of the right matrix because the summation is over the second index of ##X^{\mu\rho}## and the first index of ##\eta_{\rho\nu}##.

(b) ##{X_{\mu}}^{\nu}=\eta_{\mu\rho}X^{\rho\nu}=
\left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right)
\left( \begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right)
=\left( \begin{array}{cccc}
-2 & 0 & -1 & 1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right)
##,

where the rows of the left matrix are multiplied by the columns of the right matrix because the summation is over the second index of ##\eta_{\mu\rho}## and the first index of ##X^{\rho\nu}##.

(c) ##X^{(\mu\nu)}=\frac{1}{2}(X^{\mu\nu}+X^{\nu\mu})=\frac{1}{2}\Bigg[\left( \begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right)+\left( \begin{array}{cccc}
2 & -1 & -1 & -2 \\
0 & 0 & 1 & 1 \\
1 & 3 & 0 & 1 \\
-1 & 2 & 0 & -2 \end{array} \right)
\Bigg]=\left( \begin{array}{cccc}
2 & -0.5 & 0 & -1.5 \\
-0.5 & 0 & 2 & 1.5 \\
0 & 2 & 0 & 0.5 \\
-1.5 & 1.5 & 0.5 & -2 \end{array} \right)
##

(d) ##X_{[\mu\nu]}=\frac{1}{2}(X_{\mu\nu}-X_{\nu\mu})=\frac{1}{2}(\eta_{\mu\rho}X^{\rho\sigma}\eta_{\sigma\nu}-\eta_{\nu\sigma}X^{\sigma\rho}\eta_{\rho\mu})##

Are my answers to (a), (b) and (c) correct?

With part (d), I'm not sure if I should take the original matrix to ##X^{\rho\sigma}## or the transposed matrix to ##X^{\rho\sigma}##? Does it make a difference anyway?
 
Physics news on Phys.org
What you have written looks correct to me, including (d). If you instead used the transposed matrix in (d) you would change just the sign of the answer.
 
Ok!

(d) ##X_{[\mu\nu]}=\frac{1}{2}(X_{\mu\nu}-X_{\nu\mu})=\frac{1}{2}(\eta_{\mu\rho}X^{\rho\sigma}\eta_{\sigma\nu}-\eta_{\nu\sigma}X^{\sigma\rho}\eta_{\rho\mu})=
\frac{1}{2}\left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right)
\left( \begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right)
\left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right) -
\frac{1}{2}\left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right)
\left( \begin{array}{cccc}
2 & -1 & -1 & -2 \\
0 & 0 & 1 & 1 \\
1 & 3 & 0 & 1 \\
-1 & 2 & 0 & -2 \end{array} \right)
\left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right)##
##=\frac{1}{2}
\left( \begin{array}{cccc}
2 & 0 & -1 & 1 \\
1 & 0 & 3 & 2 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & -2 \end{array} \right)-\frac{1}{2}
\left( \begin{array}{cccc}
2 & 1 & 1 & 2 \\
0 & 0 & 1 & 1 \\
-1 & 3 & 0 & 1 \\
1 & 2 & 0 & -2 \end{array} \right)
=\left( \begin{array}{cccc}
0 & -0.5 & -1 & -0.5 \\
0.5 & 0 & 1 & 0.5 \\
1 & -1 & 0 & -0.5 \\
0.5 & -0.5 & 0.5 & 0 \end{array} \right)
##

(e) ##{X^{\lambda}}_{\lambda} =\eta_{\lambda\rho}X^{\rho\sigma}\eta_{\sigma\lambda}##

Is my answer to (d) correct?

Am I on the right track with (e)? How do I sum over ##\lambda##?
 
(d) looks OK
(e) is just the trace of a matrix you have already calculated (where?), so you don't need to do any new matrix multiplications.
 
andrewkirk said:
(d) looks OK

Thanks!

andrewkirk said:
(e) is just the trace of a matrix you have already calculated (where?), so you don't need to do any new matrix multiplications.

(e) ##{X^{\lambda}}_{\lambda}={X^1}_{1}+{X^2}_{2}+{X^3}_{3}+{X^4}_{4}=-2+0+0-2=-4##, from part (a).

(f) ##V^{\mu}V_{\mu}=
\left( \begin{array}{cccc}
-1 & 2 & 0 & -2 \end{array} \right)
\left( \begin{array}{c}
-1 \\
2 \\
0 \\
-2 \end{array} \right)=9
##

(g) ##V^{\mu}X^{\mu\nu}=
\left( \begin{array}{cccc}
-1 & 2 & 0 & -2 \end{array} \right)
\left( \begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right)=
\left( \begin{array}{cccc}
0 & -2 & 3 & 9 \end{array} \right)
##

What do you think?
 
V_{\mu} and V^{\mu} have different components - don't forget that you need to apply the metric tensor to raise and lower indices!
 
Fightfish said:
V_{\mu} and V^{\mu} have different components - don't forget that you need to apply the metric tensor to raise and lower indices!

Ok!

(f) ##V_{\nu}=V^{\rho}\eta_{\rho\nu}=
\left( \begin{array}{cccc}
-1 & 2 & 0 & -2 \end{array} \right)
\left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right)
=
\left( \begin{array}{cccc}
1 & 2 & 0 & -2 \end{array} \right)
##

Therefore, ##V^{\mu}V_{\mu}=V^{0}V_{0}+V^{1}V_{1}+V^{2}V_{2}+V^{3}V_{3}=(-1)(1)+(2)(2)+(0)(0)+(-2)(-2)=7##.

Is it correct now?
 
Yup, looks correct now. Same for part (g) - based on your original post, it seems to be V_{\mu} instead of V^{\mu}. It helps to remember that in the Einstein summation convention, one index should be superscripted and the other subscripted.
 
Fightfish said:
Yup, looks correct now. Same for part (g) - based on your original post, it seems to be V_{\mu} instead of V^{\mu}. It helps to remember that in the Einstein summation convention, one index should be superscripted and the other subscripted.

Ok, so using ##V_{\mu}## from part (f),

(g) ##V_{\mu}X^{\mu\nu}=
\left( \begin{array}{cccc} 1 & 2 & 0 & -2 \end{array} \right)
\left( \begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array} \right)= \left( \begin{array}{cccc} 4 & -2 & 5 & 7 \end{array} \right).##

Is it all right?
 
  • #10
Yup, seems alright to me.
 
  • #11
Thanks to both andrewkirk and Fightfish for helping me to solve the problem!:smile:
 

Similar threads

Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K