MHB Finding terms in arithmetic progressions

  • Thread starter Thread starter doreent0722
  • Start date Start date
  • Tags Tags
    Arithmetic Terms
doreent0722
Messages
8
Reaction score
0
3). A company is to distribute \$36,000 in bonuses to its top five sales people. The fifth salesperson on the list will receive \$6,000 and the difference in bonus money between successively ranked salespeople is to be constant. find the bonus for each salesperson.

4). Find the third term of the recursively defined infinite sequence.
[a][/1]=3 [a][k+1]=[5][/ak]-2
 
Mathematics news on Phys.org
doreent0722 said:
3). A company is to distribute \$36,000 in bonuses to its top five sales people. The fifth salesperson on the list will receive \$6,000 and the difference in bonus money between successively ranked salespeople is to be constant. find the bonus for each salesperson.

4). Find the third term of the recursively defined infinite sequence.
[a][/1]=3 [a][k+1]=[5][/ak]-2

The sum of an arithmetic sequence is given by $$S_n = \dfrac{n}{2}(2a+(n-1)d)$$ where $$n$$ is the number of terms, $$a$$ is the first term and $$d$$ is the common difference.

You're given values for $$S_n$$, $$a$$ and $$n$$ in the question
 
Hello, doreent0722!

4) Find the third term of the recursively defined infinite sequence.
. . a_1=3,\;\;a_{k+1} = 5a_k -2
Do you understand what you are given?

The first term is 3.
Thereafter, each term is 5 times the preceding term, minus 2.

. . \begin{array}{ccccccc} a_1 &=& 3 \\ a_2 &=& 5(3)-2 &=& 13 \\ a_3&=& 5(13) - 2 &=& 63 & {\color{red}\Longleftarrow} \\ a_4 &=& 5(63)-2&=& 313 \\ a_5 &=& 5(313)-2 &=& 1563 \end{array}
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top