MHB Finding the Area of a Figure Given by an Equation

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Area Figure
Click For Summary
The discussion focuses on finding the area of a figure defined by the equation (x+y)²/16 + (x-y)²/9 = 1, which represents an ellipse. The solution involves a transformation using parameters x+y and x-y, leading to expressions for x and y in terms of α. The integrand ydx is explained as representing the area of infinitesimally small rectangles, where y is the height and dx is the width. The area is computed using the integral from 0 to 2π, resulting in a final area of 6π or approximately 18.849. This method illustrates the fundamental concept of integration in calculating the area under a curve.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Question:- Find the area of the figure given by the cartesian equation below:

$$\frac{(x+y)^2}{16}+\frac{(x-y)^2}{9}=1$$

Solution given:-

Let $x+y= 4\cos{\alpha},x-y=3\sin{\alpha}$ Then $x=\frac{4\cos{\alpha}+3\sin{\alpha}}{2}$ $\Rightarrow dx=\frac{3\cos{\alpha}-4\sin{\alpha}}{2}d\alpha$

$y=\frac{4\cos{\alpha}-3\sin{\alpha}}{2}$. So, $ydx=\left(3-\frac{25}{8}*\sin{2\alpha}\right)*d\alpha$ What is this ydx?

Hence the required area is


$$\displaystyle\int_0^{2\pi}\left(3-\frac{25}{8}*\sin{2\alpha}\right)*d\alpha$$ Why does the author select ydx as integrand for computation of area of ellipse? What is the logic behind that?

$=6\pi=18.849$

If any member of Math help Board knows the explanations for my queries, may reply to this question.
 
Physics news on Phys.org
$y$ is the y-coordinate of a point on the edge of the figure. $dx$ is an infinitely small increment of the x-coordinate.
The product $y\,dx$ represents a rectangle of height $y$ and width $dx$. Its area is $y\,dx$.
If we add all such rectangles together, we get the area of the figure.

It's actually more or less the definition of an integral.
See here how that interpretation works.

Riemann_Integration_and_Darboux_Lower_Sums.gif
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K