Pranav said:
Problem:
Let $\displaystyle (3x^2+2x+c)^{12}=\sum_{r=0}^{24} A_rx^r$ and $\dfrac{A_{19}}{A_5}=\dfrac{1}{2^7}$, then $c$ is
A)4
B)5
C)6
D)7
Attempt:
One way I know of to solve such a problem is by using the multinomial theorem but I am reluctant to use it here. It would take a lot of time to write down all the combinations and perform the calculations if I use multinomial theorem. Since this is an exam problem, I feel there exists a much better method.
Any help is appreciated. Thanks!
Hi
Pranav,:)
I don't know if my way of attacking this problem looks easy (or the other way round) to you, but I think I will post my solution here...
$\displaystyle (3x^2+2x+c)^{12}=(3x^2+(2x+c))^{12}=\sum_{n=0}^{12} {12\choose n} (3x^2)^n(2x+c)^{12-n}$
Now, in order to collect all coefficients of $x^{19}$, we only need to consider the cases when $n=7,\,8,\,9$ (we could tell these are the only cases we need to take care if we think of the term $(3x^2)^n$:
[TABLE="class: grid, width: 70%"]
[TR]
[TD="width: 15%"]$n$[/TD]
[TD]The term associates with $x^{19}$[/TD]
[/TR]
[TR]
[TD]$n=7$[/TD]
[TD]${12\choose 7}\cdot 3^7\cdot{5\choose 0}\cdot2^{5} \cdot c^0\cdot x^{19}=25344(3^7)x^{19}$[/TD]
[/TR]
[TR]
[TD]$n=8$[/TD]
[TD]${12\choose 8}\cdot 3^8\cdot{4\choose 1}\cdot2^{3} \cdot c^1\cdot x^{19}=47520(3^7)cx^{19}$[/TD]
[/TR]
[TR]
[TD]$n=9$[/TD]
[TD]${12\choose 9}\cdot 3^9\cdot{3\choose 2}\cdot2^{1} \cdot c^2\cdot x^{19}=11880(3^7)c^2x^{19}$[/TD]
[/TR]
[/TABLE]
Now, in order to collect all coefficients of $x^{5}$, we only need to consider the cases when $n=0,\,1,\,2$ (similarly, we could tell these are the only cases if we think of the term $(3x^2)^n$:
[TABLE="class: grid, width: 70%"]
[TR]
[TD="width: 15%"]$n$[/TD]
[TD]The term associates with $x^{5}$[/TD]
[/TR]
[TR]
[TD]$n=0$[/TD]
[TD]${12\choose 0} \cdot{12\choose 7}\cdot 2^{5} \cdot c^7\cdot x^{5}=25344(c^7)x^{5}$[/TD]
[/TR]
[TR]
[TD]$n=1$[/TD]
[TD]${12\choose 1}\cdot 3^1\cdot{11\choose 8}\cdot2^{3} \cdot c^8\cdot x^{5}=47520(c^8)x^{5}$[/TD]
[/TR]
[TR]
[TD]$n=2$[/TD]
[TD]${12\choose 2}\cdot 3^2\cdot{10\choose 9}\cdot2^{1} \cdot c^9\cdot x^{5}=11880(c^9)x^{5}$[/TD]
[/TR]
[/TABLE]
Since we're told $\dfrac{A_{19}}{A_5}=\dfrac{1}{2^7}$ and from our working, we have
$\begin{align*}\dfrac{A_{19}}{A_5}&=\dfrac{25344(3^7)+47520(3^7)c+11880(3^7)c^2}{25344(c^7)+47520(c^8)+11880(c^9)}\\&=\dfrac{(3^7)(25344+47520c+11880c^2)}{(c^7)(25344+47520c+11880c^2}\\&=\dfrac{3^7}{c^7}\end{align*}$
In other words, we obtain $\dfrac{A_{19}}{A_5}=\dfrac{1}{2^7}=\dfrac{3^7}{c^7}$ or simply, $c=6$.