MHB Finding the equation of a curve given the tangent equation

  • Thread starter Thread starter musad
  • Start date Start date
  • Tags Tags
    Curve Tangent
musad
Messages
8
Reaction score
0
I have a calculus question and I am not sure where to get started. The question states:"Find the value of c>0 such that the line y=x+1 is the tangent line to the curve c√x (i.e. intersects the curve at one point and shares the same slope at that point)."
Thanks
 
Physics news on Phys.org
musad said:
I have a calculus question and I am not sure where to get started. The question states:"Find the value of c>0 such that the line y=x+1 is the tangent line to the curve c√x (i.e. intersects the curve at one point and shares the same slope at that point)."
Thanks

$\displaystyle \begin{align*} x + 1 &= c\,\sqrt{x} \\ \left( x +1 \right) ^2 &= \left( c\,\sqrt{x} \right) ^2 \\ x^2 + 2x +1 &= c^2\,x \\ x^2 + \left( 2 - c^2 \right) \, x + 1 &= 0 \end{align*}$

Now to have only one solution, the discriminant must be zero...
 
What is the discriminant?
 
musad said:
What is the discriminant?

You're doing calculus without knowledge of basic quadratics?
 
Prove It said:
You're doing calculus without knowledge of basic quadratics?

I do, I just think we may use different terminology so i wasnt sure what the term meant, sorry.
 
musad said:
I do, I just think we may use different terminology so i wasnt sure what the term meant, sorry.

For a quadratic of the form $\displaystyle \begin{align*} a\,x^2 + b\,x + c = 0 \end{align*}$, the roots are $\displaystyle \begin{align*} x = \frac{-b \pm \sqrt{b^2 - 4\,a\,c}}{2a} \end{align*}$. The stuff under the square root is important, because it determines whether or not there are solutions (as you can't have the square root of a negative number). It's so important, it has its own name, the DISCRIMINANT.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top